

B E S T P R A C T I C E S W H I T E P A P E R

Value-Driven Delivery

Erik Simmons, Senior Fellow, Construx Software

Version 1.1, July 2018

Value-Driven Delivery is the most compelling way to structure and

sequence work when creating solutions. By delivering value to

stakeholders in short, regular intervals, in the order the stakeholders

prefer, teams learn about the problem at hand and how the solution

elements perform. They also enable potential business results from

early use of parts of the system.

This white paper was downloaded from

www.construx.com/whitepapers.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 2

Contents

Introduction ... 3

What is value? .. 4

Value-Driven Delivery .. 6
Who are your stakeholders? ... 6
What do they value? .. 6
What are you doing in the next two weeks or less? 8
Effects on estimation ... 9

Structuring and conducting value-driven work ... 11

Evolutionary Delivery ... 11
What about Scrum? ... 12

Specifying stakeholder value ... 13

Detail level and timing issues ... 14

Supporting models, concepts, and techniques... 16

Agile stories .. 16

The Kano Model ... 17

Diffusion of Innovations .. 19
Diffusion populations ... 20
Innovation accelerators ... 22

User experience proof points ... 23

The HEART framework .. 24

Summary .. 26

Contributors .. 27

About Construx ... 28

Value-Driven Delivery

www.construx.com | Best Practices White Paper 3

Introduction

When a team sets out to create a solution to address a problem or opportunity,

it can proceed in many ways. For example:

What is easy: The team starts out with what they perceive to be easiest or

most familiar. This strategy can create the feeling of a good start and rapid

progress and can establish trust and credibility for the team. But schedule and

resource commitments can be broken when difficult or unfamiliar things appear

later in the project—and no one likes late surprises.

What is risky: The team begins with the riskiest elements so that unpleasant

surprises are exposed early. This permits re-estimation and adjusted

commitments with greater confidence because “bad news” should be

discovered early if it exists.

The largest assumptions: The team addresses the largest business and design

assumptions to test whether they are true. This allows for early course

corrections and avoidance of dead-end development options.

The user interface: The team starts with the user interface and works

downward into the system’s implementation based on the chosen architecture.

This allows for early feedback on the user interface and its functions.

The team has many additional choices beyond these examples, but the most

compelling choice for how the team sequences work is to be value-driven.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 4

What is value?

Value is a concept we encounter frequently in daily life. Value is defined in two

main ways:

1. The importance, worth, merit, or usefulness of something. For

example, a device can have valuable features.

2. A principle or a behavior standard. For example, honesty and

generosity are valued in people.

This definition shows that value has both an economic and a philosophical

aspect. In the economic aspect, value is measured using some equivalence to a

currency, whether that currency is money, time, or even personal reputation.

Some people value getting a new product the day it is released, even if the

price would be lower later on and they must stand in line for several hours in a

cold rain to get it.

The philosophical aspect of value is not based on some currency but rather on

what is right or what is good.

It is useful to distinguish value-in-exchange from value-in-use. This distinction,

which is also known as the paradox of value, was popularized by Adam Smith in

The Wealth of Nations (1776). Value-in-exchange refers to what you pay (in

some sense) for something when you acquire it. Value-in-use comes later, at

the time when you use or consume the object.

At the time of purchase, we are placed in a situation where we must estimate

the item’s value-in-use. This can be difficult, especially if the amount of time

between purchase and use will be large. Sometimes disappointment occurs

even when we fully realize the item’s potential value-in-use because we

inaccurately predicted how much satisfaction we’d feel from owning something

or achieving a goal. Psychologists call this miswanting. For example, people

who make New Year’s resolutions for weight loss often purchase exercise

equipment with the expectation of value-in-use, only to find the equipment

sitting unused within a few months.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 5

Another way to frame and think about the

paradox of value comes from the Three-Circle

Model, shown in Figure 1. Each of the three

circles represents a unique viewpoint on a

solution.

The Business circle represents the economic

viewpoint. A solution must be marketable,

profitable, and affordable.

The Usage circle represents the conceptual

viewpoint. A solution must be desirable, usable, and useful.

The Technology circle represents the implementation viewpoint. A solution

must be manufacturable, functional, and consumable (by the industry and

associated ecosystems).

Within the Three-Circle Model, value is the overlap between the Business and

Usage circles, as shown in Figure 2.

Value unites the economic and conceptual perspectives, tying investment to

user experience. Users see a solution as an offering made by the business, and

the business views the solution as a promise made to users. Thus, Value is the

area between offering and promise. The offering and promise meet in the

Figure 1

Figure 2

Value-Driven Delivery

www.construx.com | Best Practices White Paper 6

solution’s brand, which is the focus of the market cycle. By uniting the Business

and Usage perspectives, Value relates value-in-exchange to value-in-use.

The Three-Circle Model contains many other insights, but one particularly

worth mentioning in the value-driven context is that there must be coherence

among the solution’s Value, Capabilities, and Ingredients. The solution’s

Capabilities must be those that are necessary and sufficient to generate its

Value, and the Ingredients must in turn be necessary and sufficient to enable

those Capabilities. A focus on value prevents scope creep and gold-plating,

while assuring that no value is left unrealized.

Value-Driven Delivery

Value-Driven Delivery is achieved using the answers to these three simple, but

not at all easy, questions:

1. Who are your stakeholders?

2. What do they value?

3. What are you doing in the next two weeks or less to provide value to

them?

Who are your stakeholders?
Teams often have more stakeholders than it first appears. A stakeholder is an

individual or organization with some material stake in the outcome of the

program or project. It is not uncommon for a team to have one or two dozen

stakeholders, including end users, peer teams, component teams,

management, quality, support, legal, etc.

The list of stakeholders must be kept current. Maintaining an up-to-date list of

stakeholders is crucial to the practice of Value-Driven Delivery because value is

defined by stakeholders. It is common for stakeholders to change their minds

on what is valuable during projects, so it’s important to keep in touch with

them. Also, stakeholders can appear or disappear over time, and the team

must be aware of all such events so that it can respond appropriately. When a

project has a large number of stakeholders, the team must consciously

prioritize among them to ensure the best possible allocation of development

resources. The final section of this white paper, “Supporting models, concepts,

and techniques,” contains an introduction to several models and concepts that

can help you prioritize stakeholder groups.

What do they value?

With an accurate list of stakeholders, the team must develop an understanding

of what the stakeholders value. Those familiar with Lean Startup principles and

practices will find Customer Development a good place to start. But there are

Value-Driven Delivery

www.construx.com | Best Practices White Paper 7

many other stakeholders beyond customers, so Customer Development is not

enough by itself.

One challenge is that when asked what they value, many stakeholders will

quite naturally reply in terms of features, capabilities, or functions they would

like to see. Few will reply with their underlying values. In most such cases, it is

good to ask “why?” to get beneath their constrained implementation requests

to understand the values at work. Many, perhaps most, stakeholders are not

deep domain experts, so they won’t be able to envision the ramifications of a

particular implementation request. Also, stakeholders rarely understand the

detailed capabilities of the tools the team is using to construct the solution.

So, the suggested feature, capability, or function is unlikely to be the best idea

from many perspectives, such as cost effectiveness, maintainability,

scalability, performance, or security.

Getting beneath a stakeholder’s constrained implementation ideas to his or her

underlying values can be tricky. But there are good techniques for doing so,

especially within some new Requirements Engineering practices.

A focus on stakeholder value broadens the range of work a team can

undertake. For example, many years ago a team that I led was engaged to

create a new membership application for a trade union. The union’s current

membership system had several problems and shortcomings, including very

poor report performance. It took hours to determine what needed to be known

in minutes or seconds, and some summary reports took days to complete, if

they completed at all. The new system was of a size that would take a year or

more to finish. In the traditional model, the team would collect requirements

for the first month or two and then leave to design, construct, and test the

system. The end users would receive value only when the system was rolled out

all at once a year or more later, and the team’s only product would have been

the delivered software system.

But this effort was managed using a Value-Driven Delivery approach. The team

was keenly aware that its product was not a delivered system, or software

code, or completed tests, or documentation pages—it was stakeholder value.

The most valuable thing the team could do first was to bring in a database

specialist to improve report performance in the current system by fixing some

indexing problems and rewriting a few queries and stored procedures. This

work did not contribute to the new system at all, but the users would have

suffered with the existing system’s issues for another 12 months otherwise.

This simple, quick investment generated significant stakeholder value within

the first week of the project. Besides the obvious business results, the

development team also gained the trust and respect of all the stakeholders,

which paid dividends through the project and led to many more incremental

value deliveries before the full system was finally in place many months later.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 8

What are you doing in the next two weeks or less?

Value-Driven Delivery is based on early, frequent stakeholder value deliveries.

The two-week duration stated here is a rule of thumb, and you might find that

another duration fits your environment. However, shorter is nearly always

better, so push for the shortest feasible iteration length.

Using Value-Driven Delivery can mean that the team cannot necessarily do

what is easiest, most convenient, or least expensive first. However, the

benefits of early, regular value delivery vastly outweigh the costs the team

incurs to behave that way. The benefits of early, frequent stakeholder value

deliveries include:

1. Early learning about the problem at hand and the environment that

surrounds it.

2. Early stakeholder feedback on delivered parts of the solution.

3. Information on how the solution elements perform, and the chance to

improve them in subsequent delivery cycles.

4. Potential business results from early use of parts of the solution.

Of course, there are many elements that a team might build as part of solution

development that require longer than two weeks (or one cycle) to fully

complete. This work can proceed based on stakeholder priority, but the

challenge remains to deliver something of value to some stakeholder every two

weeks or less. In every case, some part or aspect of a larger solution element

can be delivered within a two-week time frame at most.

Ideally, value deliveries will be sequenced so that the most valuable things get

delivered first. The challenge is to minimize the time required for the team to

get net-positive return on investment (ROI) given the program’s accruing costs.

With traditional sequential work,

all the value is delivered at the

end of the program via a big-bang

rollout of the entire system. Cost

accrues throughout the project, so

there’s a danger the team won’t

get to positive ROI before time or

money runs out (Figure 3). In most

environments, working with a

traditional sequential approach is

too risky.

Figure 3

Value-Driven Delivery

www.construx.com | Best Practices White Paper 9

Adopting an incremental approach

helps. The team gets value into

the system earlier, so there is a

good chance of keeping ROI at

least close to the project’s cost

accrual over time (Figure 4). This

is a major risk-reduction win. But

things could still be better.

If the team can sequence its

deliveries so that the most

valuable things get done first,

it can create positive ROI very

early, possibly even from the

first delivery cycle (Figure 5).

This is a huge benefit of a

value-driven approach, which

can lead to significant cost

avoidance because work is not

performed based on inertia or

on some dated and bloated

scope definition.

The value-driven approach provides still one more benefit. Because

stakeholders have parts of the solution quite early, the lessons and insights

that come from their use

often expose new,

unanticipated sources of

value. So, the diminishing

returns depicted in Figure 5

are often postponed, and the

value delivery continues at

substantial levels for much

longer. This results in higher

total value delivered by the

team (Figure 6).

Effects on estimation

There is often a battle of wills at the beginning of a project based on the

scope, resources, schedule, and quality. You have probably experienced some

form of the argument where an executive or manager says, “The system must

be finished in 12 months,” to which you may have replied, “But our estimates

show it can’t be done in less than 18 months.” The argument continues and you

might be pressured to accept your boss’s goal for completion date as your

Figure 4

Figure 5

Figure 6

Value-Driven Delivery

www.construx.com | Best Practices White Paper 10

estimate. Happily, this problem frequently vanishes when you use Value-Driven

Delivery. When stakeholder value deliveries begin very early, and then

continue every couple of weeks, the discussion changes from “How soon will

you be done?” to “How long can you keep this up?” That’s a very different

environment, one that emphasizes abundance and empowerment rather than

scarcity and control. In the union membership application example cited

earlier (in the “What do they value?” section), the project continued for nearly

two years, not the nominal 12 months it would have taken to merely replace

the membership application. The extension was not because of schedule slips,

but because the stakeholders kept asking for more of the value the team was

delivering with reliable regularity.

This example illustrates how a value-driven project really has no end date in

the traditional sense. Value-driven projects end when all the things we could

still do are not worth the cost of doing them. The concept that a project has no

formal end date can be a challenge to traditional project and program

management thinking. But by stopping work on a given project with low

remaining value, those resources can be allocated to other, higher-value

projects. In the end, an organization must maximize stakeholder value delivery

while controlling costs, so avoiding low-value work is an excellent heuristic.

Value-Driven Delivery is a great approach for today’s increasingly complex

environment.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 11

Structuring and conducting value-driven work

What is the best approach to structuring value-driven work? Let’s examine

three alternatives:

1. An iterative approach involves making several passes rather than

attempting to complete work in a single pass.

2. An incremental approach involves working on parts of the overall

solution in sequence, adding them to the completed prior work.

3. An evolutionary approach is both iterative and incremental and uses

learning to drive future work.

Due to the evolving nature of stakeholder value, an evolutionary approach is

crucial to success on value-driven projects. Iterative or incremental processes

can use learning to drive future work, but they are not required to do so and,

in practice, teams using these approaches often neglect or even ignore learning

because of time or resource constraints. In an evolutionary approach, learning

must drive future work—it is a central feature of evolutionary work.

Evolutionary Delivery

One excellent, long-established way of working in an evolutionary way is called

Evolutionary Delivery (Evo). Evo was created by Tom Gilb, who is often called

“the Grandfather of Agile,” and it was described in a book called Principles of

Software Engineering Management (Addison-Wesley, 1988).1

Evo includes two main parts. The first is called the head (also called the

Strategic Management Cycle), which serves as a sensing and coordination

mechanism for the work. The head focuses on top-level objectives, on global

architecture, and on maintaining a coarse-grained evolutionary plan. The head

is where the team keeps track of stakeholders and what they value.

The head controls the second part of Evo, the body (also called the Result

Cycle). The body is a value-delivery engine, working in steps that are typically

two weeks or shorter to deliver stakeholder value. A step is defined,

constructed, and delivered, and—importantly—the results are then validated

against the step’s original quantified success criteria. These results and the

associated learning feed the next cycle and provide feedback to the head about

how well the step worked. The basic Evo process is shown in Figure 7.

1 See Gilb’s Competitive Engineering (Elsevier, 2005) for a more recent
description of Evolutionary Delivery.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 12

A central facet of Evo is that stakeholders assist with selecting the next step

each time, so their values and priorities are considered directly. This regular

stakeholder input results in the most valuable steps possible being taken first,

which was the optimal approach described earlier. It is not just a matter of

being iterative and incremental. Evo and the learning it generates enables

teams to generate positive ROI very early and then stay there.

People often object to the Evo approach initially, claiming that their work

cannot be broken down into such small pieces. But experience shows that this

is possible for any nontrivial project, from a small software system to an

aircraft carrier. All that is required is to reframe the problem and the solution

in terms of stakeholders and their values. With that primary view on the

system, the candidate Evo steps are usually easy to see. If, however, we look

at the system only as a complex, impenetrable whole (or a heap of source

code), the steps remain invisible.

What about Scrum?

Scrum can function as a fine Evo body for result delivery, but—at least in

common implementations—it lacks the value-driven focus of Evo. Even if your

team is practicing Scrum, you can find important additional performance gains

by adopting Evo as a “value engine” on top of Scrum’s “execution engine.”

Ryan Shriver has written eloquently and powerfully on this topic.2 According to

Shriver, adding Evo to Scrum helps transform focus from execution to value:

2 See https://ryanshriver.files.wordpress.com/2013/01/valuedelivery_sg2010.pdf.

Figure 7

https://ryanshriver.files.wordpress.com/2013/01/valuedelivery_sg2010.pdf

Value-Driven Delivery

www.construx.com | Best Practices White Paper 13

Execution Focus Value-Driven Focus

Feature Building Value Delivery

Focus on Means Focus on Ends

Planning by Features Planning by Value

Maximizing Story Velocity Maximizing Value

Specifying stakeholder value

Once you have identified something that a stakeholder values, it’s important to

document it in a quantified, verifiable way. Otherwise, how can you know

whether you have delivered it? An excellent technique for doing this is called

Planguage. The name is a contraction of planning and language. Planguage is a

keyword-driven natural language. It can be learned in just a few hours, and the

results can be read and understood by a broad range of people. Like Evo,

Planguage was developed by Tom Gilb as another part of his broader

methodology Competitive Engineering.

Values expressed using Planguage will contain both a Scale and a Meter. The

Scale describes the scale of measure, while the Meter describes the process or

device used to establish location on the Scale. For example, when driving along

a highway in a car in the USA, the Scale for velocity is miles per hour and the

Meter is the speedometer. Specifying values is often much more nuanced than

this simple example, but this example serves as a helpful anchor when working

with more challenging material.

For example, suppose a stakeholder tells you that an order entry system is too

difficult to learn and she wants it to be easier. You could, after more

discussion with her, come to specify her value in the form of a Planguage

specification similar to this:

Ambition: Make the system easy to learn.

Rationale: Learnability issues are among the top 3 complaints from users.

Priority Reason: Upcoming hiring makes learnability for order entry

critical.

Scale: Average time required for a new user to complete a 1-item order

using only the online help system for assistance.

Meter: Measurements obtained on 25 new users during user interface

testing.

Source: Anna Coleman.

http://www.gilb.com/

Value-Driven Delivery

www.construx.com | Best Practices White Paper 14

Minimum: No more than 7 minutes.

Target: No more than 5 minutes.

Outstanding: No more than 3 minutes.

Past: 11 minutes <-- Recent site statistics.

New user: Someone who has never used our order entry system before but

is familiar with browser-based applications.

Documented in this format, the stakeholder’s value is quantified and defined in

such a way that everyone can see how success will be judged. Anyone who

disagrees with or fails to understand the definition, targets, or measurement

method can raise questions or concerns explicitly.

A range of success is captured in the Minimum, Target, and Outstanding

achievement levels, allowing for flexibility and tradeoffs among competing

demands during implementation. The Minimum provides the just-acceptable

performance level, dividing success from some form of failure. The Target

value is what we would like to achieve (often some safety margin above

Minimum). The Outstanding value is something that could feasibly be achieved

if everything went perfectly. In today’s complex and rapidly changing

environments, this flexible clarity is essential for teams.

If certain stakeholder values are critical to the success or failure of a project,

they can be placed into a table called a Landing Zone. A Landing Zone

describes a “region” of success for a project or product in no more than one to

two dozen rows. Landing Zones provide many benefits, including improved and

accelerated decision making and an explicit definition of success.

Detail level and timing issues

Because of the quickly evolving nature of stakeholder value, it should come as

no surprise that a stakeholder value specification cannot be accomplished in a

single, exhaustive pass at the beginning of a project. It is infeasible to expect

everyone to know all the things that will become important as the solution

evolves. Changing stakeholder values and a changing stakeholder population all

but guarantee the need to evolve the specification over time.

If everything cannot be written up front, how much detail is enough? When

must it be written? There is no fixed answer for all projects, but we can apply

useful heuristics to answer the questions in any given instance.

First, what does it mean for a specification to be “complete”? One answer

would be when it contains every possible statement and detail. But this is both

impossible and unwise. Even if you could write down every detail, you

shouldn’t have to. Your team has experience and domain expertise, as do

various stakeholder groups.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 15

A more pragmatic, effective definition of specification completeness is this:

A specification is complete when it contains the details necessary for those

who read it to do their work at an acceptable risk level.

Using this definition, a specification can be complete on the first day of the

project, the second, and so on until the last day, even though the specification

might be significantly larger by the project’s end than it was at the beginning.

Heuristic: Capture stakeholder values at just enough detail to enable

current work at an acceptable risk level.

Additional details can be added as needed over time. However, avoid the trap

of specifying a lot of detail in areas that are well-known and understood. It

may feel like great productivity to generate a hundred pages or more of

specification in the first week of the project. If it is filled with precedented

details, this specification does not reduce project risk levels. It merely

documents what everyone already knows, making the specification’s value

mainly ceremonial. To avoid this trap, use the following heuristic:

Heuristic: Focus specifications on new, risky, and complex areas of

stakeholder value.

This heuristic will generate more detail when it is most useful, not when it is

easiest to document. One consideration is that the valuable content is likely to

change with time. For example, team members gain domain expertise with

time, so some information can be abstracted. Therefore, the template or data

structure that comprises the specification must be kept current:

Heuristic: Regularly update the specification template or data structure

to reflect the current needs of those who use it to guide their work.

Problems can occur in either direction. Some content may be “inertial,”

appearing because it appeared in previous specifications rather than because

someone derives value from it currently. Also, specification readers might be

lacking information they need to keep risk at an acceptable level. Regular re-

evaluation of the specification content and detail emphasis can prevent waste

and manage risk. When did you last ask the people who read your specifications

what they value? What fraction of your specifications are not read by anyone?

Value-Driven Delivery

www.construx.com | Best Practices White Paper 16

Supporting models, concepts, and techniques

Various models and techniques are helpful when used with Value-Driven

Delivery. Five models and techniques are described here, but you might find

other models and techniques useful in your value-driven work:

1. Agile stories
2. The Kano Model
3. Diffusion of Innovations
4. User experience proof points
5. The HEART framework

Agile stories

Anyone who has worked within an Agile environment is probably familiar with

Agile stories. The most common syntax for Agile stories is

As a [role name], I want [feature or function] so that [goal or

value proposition].

Stakeholder values can be discovered when using Agile stories, since they

explicitly contain a role name and the value that some stakeholder perceives or

anticipates when asking for some feature or function. Stories also contain

Acceptance Criteria, which can contain additional details and insights into the

stakeholder’s values. Here is an example story:

As a digital photographer, I want to be able to store various settings so

that I can recall them quickly and not miss an important picture.

Acceptance criteria:

1. The camera holds up to five sets of user settings.
2. Settings include white balance, autofocus, flash, ISO rating, file

format, and auto-exposure.
3. Setting sets can be created, read, updated, and deleted.
4. A setting set can be recalled with no more than two taps.
5. Each setting can be given a user-defined name of up to 32

characters.

Good acceptance criteria are clear, concise, written in the language the end

user understands, and verifiable. From a value-driven perspective, story

verifiability must include the goal or value proposition level, not just the

feature or function level. Don’t assume correct implementation of the

feature or function alone guarantees the satisfaction of the goal or value

proposition asserted in the story. In the example story, there is no guarantee

that meeting only the stated acceptance criteria to the letter will in fact

deliver the necessary value to the camera user. As we mentioned earlier, many

Value-Driven Delivery

www.construx.com | Best Practices White Paper 17

stakeholders are not domain experts and do not fully understand the tools used

to create a solution. Their requested features, capabilities, and functions

might not be the best way to achieve the stakeholders’ underlying values.

An Agile story is best thought of as a promise to hold a future conversation. The

story’s existence indicates that the feature, capability, or function is important

and valued by the stakeholder, and it provides a bit of the context. But it is

likely that additional details will be needed prior to delivery. In most cases,

these can come from a conversation just prior to starting implementation. At

that time, the conversation alone might suffice, but often the additional

details can and should be captured in Planguage statements or system models

such as those within UML or SysML. It is not uncommon for the story to evolve

significantly as discussions elaborate on the stakeholders’ values.

The Kano Model

Developed in the 1980s by Noriaki Kano, the Kano Model3 is an effective model

for locating, classifying, and analyzing stakeholder values. The model maps

stakeholder satisfaction against various types of solution qualities. Because the

original paper has been translated in various ways into English, many versions

of the terms used for the model’s quality categories exist. One easy-to-

understand set of these terms is shown in Figure 8.

In the Kano Model, the

vertical dimension

represents customer

satisfaction, as indicated

by the unhappy and happy

faces in the figure. The

horizontal dimension

represents the degree to

which various solution

qualities are present or

instantiated. For the

purposes of this article,

we’ll discuss the model in

terms of stakeholder

requirements and their

resulting value.

Expected requirements: The red line (the lower curved line) shows Expected

requirements. Expected requirements do not result in stakeholder satisfaction

no matter how much they are present. Their only result is to prevent

3 See https://en.wikipedia.org/wiki/Kano_model.

Figure 8

https://en.wikipedia.org/wiki/Kano_model

Value-Driven Delivery

www.construx.com | Best Practices White Paper 18

dissatisfaction when fully present. If missing, the lack of these requirements

causes great dissatisfaction. For example, suppose I were to book a hotel room

online and, after arriving at hotel and going to my room, I discover that the

door will not lock, the lights do not work, and the room lacks sheets and

towels. My natural reaction would be great dissatisfaction, and I would let the

front desk know I needed another room. It would not be acceptable for the

front desk personnel to reply to my complaint with “But Mr. Simmons, you did

not ask for those things when you made your reservation.” These requirements

were my expectation, and they comprise a part of the definition of the product

known as a Hotel Room. Stakeholders do not tell you their Expected

requirements unless they are not met, because they expect them to be present

based on the underlying definition of the solution itself. Missing Expected

requirements will cause you to miss market entry, simply because your solution

will not be what stakeholders expect such a product to be.

Indifferent requirements: The yellow line (the horizontal line sitting on the

Absent-Present dimension line) represents Indifferent requirements. These

requirements are not valued by stakeholders at the present time, but they

could be in the future. Returning to the hotel room example, for many years I

did not drink coffee, so I did not place any value on how many types of coffee

were provided in the room, nor its quality. Based on numerous studies showing

associations between coffee consumption and various health benefits, I started

to drink coffee, so now that aspect of the room matters to me, especially if no

convenient coffee house is nearby. Stakeholders do not tell you their

Indifferent requirements because (obviously) they are indifferent to them. You

must decide what subset of all Indifferent requirements is worth the time and

resources to track and manage. Broader trends in technology, ethics, law,

health, politics, demographics, and other domains can be guides to the

relevant choices. SenseMaker® is an excellent way to detect weak signals that

could be harbingers of a shift in Indifferent requirements.

Desired requirements: The blue line (the diagonal line) represents Desired

requirements, which are the first chance to create positive stakeholder

satisfaction because the line extends above the x-axis. In the hotel room

example, my choice to begin drinking coffee caused an Indifferent requirement

(slope = 0) to become a Desired requirement (slope > 0). I also desire a low

price, a comfortable bed, and a quiet, spacious room. The more these

requirements are met, the more satisfied I am, and vice versa. Stakeholders do

tell you their Desired requirements, because they are not expectations and

they care about them.

Exciting requirements: The green line (the upper curved line) represents

Exciting requirements, which are in many ways the inverse of Expected

requirements. The absence of Exciting requirements does not create

dissatisfaction because stakeholders do not even conceive that the Exciting

Value-Driven Delivery

www.construx.com | Best Practices White Paper 19

requirements are possible. But when Exciting requirements are exposed and

met, the result is significant stakeholder satisfaction. I cannot provide

examples of my Exciting requirements for a hotel room—by speaking them I

would be stating Desired requirements. But I can imagine they might involve a

chilled bottle of champagne in my room, along with a certificate for a massage

after a long flight (at no additional cost, of course). Exciting requirements are

often discovered by market research, observational studies, and various

techniques within the practices of innovation (including SenseMaker® use).

Note that of these four types, only Desired requirements are spoken by

stakeholders. The others must be known or discovered by you.

Expected requirements will get you into the market. If you miss expected

requirements, your solution will be rejected and will fail in the marketplace.

Desired requirements will keep you in the market in the presence of

competition.

Exciting requirements will make you a market leader.

You might find it valuable to look at your existing specifications and judge

whether the amount of content fits your current market position. Many teams

find that legacy Expected requirements are clogging their specifications, when

the emphasis should be on Desired and Exciting requirements instead. This

happens because there is a natural flow from Exciting to Desired and finally to

Expected. For example, high-speed wireless internet connections were at first

an Exciting differentiator for hotels, but they shifted to Desired and (in most

countries) are now Expected to be present and free. Once again, we see that

stakeholder value changes with time, re-emphasizing the need for Value-Driven

Delivery to be based an evolutionary approach (iterative, incremental, and

learning-driven).

A requirement’s progression from Exciting to Expected also leads to another

specification heuristic:

Heuristic: Abstract reused requirements when possible to reduce detail

level and focus readers’ attention on the new, risky, and complex

requirements.

Diffusion of Innovations

Diffusion of Innovations (DoI) is a mature field of study with nearly a century of

practice. DoI has been used to study diverse areas ranging from adoption of

family planning practices, new antibiotics, new crop strains, and technology-

based products. Among DoI’s many useful elements for Value-Driven Delivery

are two in particular: diffusion populations and innovation accelerators.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 20

Diffusion populations

DoI defines five populations: innovator, early adopter, early majority, late

majority, and laggard. These populations are rather idealized, but they are a

good way to conceptualize the overall market and the arc of adoption within it.

The populations are shown in Figure 9.

Innovators are the

first small group to

adopt. In the classic

model, they repre-

sent 2.5% of the

total. After that

comes early

adopters, who are

the next 13.5%, and

then the early

majority, who make

up 34%. It is the

boundary between

the early adopter

and early majority that is often referred to as “the chasm.” The final two

populations are the late majority, who also make up 34%, and then the

Laggards, who are the last 16% to adopt. Within this model, the cumulative

adoption follows a familiar S-shaped curve.

The percentages within each category are all defined in terms of a Normal

distribution, so we need to take the percentages as ideal, or a default. The

model for innovation adoption in Figure 9 is a nice smooth curve, but real

adoption is a very messy thing, usually showing little similarity with the

model’s predictable path.

The characteristics of each population are different. This means that what

stakeholders in each category see as valuable will be different, so diffusion

populations are helpful as we work in a value-driven way. For example, teams

can fail when they mismatch features, functions, and capabilities to the

adopting population.

In more Agile terms, the Minimum Viable Product for each population is

different, and generally adopters in later populations will require more from

the product than the preceding populations. This fact should influence the

order in which we sequence our value deliveries and the scope of our releases,

especially in mass-market products. For example, a team that attempts to

define and release a Minimum Viable Product for the late majority could be

quite late to market, well behind a competitor whose Minimum Viable Product

is defined carefully for the innovators or early adopters.

Figure 9

Value-Driven Delivery

www.construx.com | Best Practices White Paper 21

Simplified characteristics of each diffusion population are given in the

following table. Each of the diffusion populations has distinct needs and

concerns that must be met before they will adopt something new.

Innovator Daring: Desires new functionality and ownership as an end
unto itself

Early
Adopter

Respected: Opinion leaders who often adopt as an influence
tool

Early
Majority

Cautious: Desires a competitive advantage but requires a
complete, reliable solution

Late
Majority

Skeptical: Adopts on the trailing edge, based on price,
convenience, and peer pressure

Laggard Traditional: Adopts only when it can’t be avoided, such as
when older models are no longer available

Innovators are daring, desiring new functionality and ownership so much that

they define themselves in terms of owning the latest and greatest. Innovators

are not afraid of tackling technical issues or of a lack of product support. When

they cannot find what they want from the market, innovators sometimes hack

together a partial solution to their problem rather than wait for a solution to

appear. They tend to be well off economically and tolerant of risk and the

unknown. The Minimum Viable Product for innovators is smaller than that of

later populations. New functionality or features alone can be enough to trigger

adoption. Ecosystem development, reliability, product support, and even

interoperability can be secondary. Knowing this can save time and money

before first release, while also providing revenue from innovator purchases to

fund further development. Innovators also provide valuable knowledge about

how early aspects of the solution really work.

Early adopters are (or aspire to be) respected opinion leaders, who often

adopt as a way to show or increase their influence. They tend to have better

social networks than innovators, who can be rather isolated. As opinion

leaders, early adopters are a frequent target for marketing efforts. They serve

as role models for the majority that follows. The Minimum Viable Product for

early adopters must be more complete and stable than that for innovators.

The early majority is characterized as cautious or deliberate. They take more

time deciding whether to adopt than either of the previous populations. They

need even more evidence of the efficacy, completeness, and reliability of the

solution. Therefore, the Minimum Viable Product for the early majority must be

more complete and stable than that for early adopters.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 22

The late majority is characterized as skeptical. They are motivated by things

like price and convenience, and they tend to adopt after experiencing

sufficient peer pressure to do so.

Laggards tend to be quite traditional and slow to abandon an existing idea or

solution for something new. They are beyond skeptical—they are downright

suspicious of the new thing. They will adopt only when there is no viable

alternative, such as when older models are no longer available for purchase.

Keep in mind that as individuals, we can be in various diffusion populations for

different products or ideas. You might be an innovator in one area and in the

late majority for another. And remember, this is just a brief overview of a rich

literature. See Diffusion of Innovations by Everett Rogers (Free Press, 2003) for

additional details.

The iterative, incremental, learning-driven approach of Value-Driven Delivery

is a perfect way to meet the successive requirements of the various diffusion

populations. By focusing on each population’s specific values in order, the

value deliveries match up with the natural course of adoptions, with each

population finding the value it requires in the solution at the correct moment

and funding the next phase of development via their purchases.

Innovation accelerators

In addition to the innovation populations, five innovation accelerators can be

quite helpful in Value-Driven Delivery: relative advantage, compatibility,

simplicity, trialability, and observability. According to Rogers, these attributes

explain somewhere between 50% and 90% of the variation in adoption rates.

Relative advantage Potential improvement to the current situation if

adopted

Compatibility How well the innovation fits with the culture and

past practices of the organization

Simplicity4 How simple the innovation is to learn and use

Trialability The degree to which the innovation can be sampled

or tried in part

Observability How visible the innovation is to other groups or

individuals

4 Rogers uses complexity in his book, but most people invert the concept so that all
five accelerators have a “more is better” nature.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 23

Relative advantage is the potential improvement to the current situation if
adopted. Examples of this include some new functionality or capability,
increased efficiency, cost savings, or improved quality; greater standing in the
community, or enhanced personal identity or satisfaction.

Compatibility is how well the innovation fits with the culture and past practices
of the organization. For example, how well the new innovation fits with existing
routines, whether it reuses existing concepts or vocabulary, whether it requires
new infrastructure elements, and how well it fits with the current culture and
social norms.

Simplicity is just that—how simple the innovation is to learn and use. For
example, how much training is required, complexity of any user interfaces, and
the innovation’s fit with people’s mental models of the underlying activities.

Trialability refers to the degree to which the innovation can be sampled or tried
in part. If an innovation requires several weeks of training for everyone, an
expensive investment in tools, and a difficult, irreversible data conversion,
people will be quite reluctant to adopt the innovation. Compare this to a
situation where a small team can adopt the innovation in several pieces—with
little training, low cost, and no significant risk to the broader community—to
evaluate the innovation’s benefits and feasibility. For example, an individual can
rent a car he is thinking about buying, or a dealership can loan a vehicle free of
charge while a customer’s car is being serviced to entice potential buyers.

Observability refers to how visible the innovation is to groups or individuals, in
terms of whether people recognize the underlying problem or opportunity the
solution addresses, and the ability to sense the benefits the innovation creates.
For example, companies might struggle to achieve Agile adoption when people
are not aware of the problems that the current methodology is creating. This is
especially true of groups near the periphery of an Agile adoption effort, where
the benefits might be less direct than for other groups.

In Value-Driven Delivery, the five accelerators can help locate, analyze, and
categorize stakeholder values. They can also suggest ways to improve a
solution’s adoptability, showing both the solution’s strengths and weaknesses.

User experience proof points

User experience (UX) has become a major element of many solutions.

Especially where competition is present, and at least moderate functional

equivalence exists between competing solutions, user experience plays a strong

role in purchase decisions. User experience is defined as the thoughts,

attitudes, emotions, and perceptions of the user before, during, and after

Value-Driven Delivery

www.construx.com | Best Practices White Paper 24

use.5 So UX is a very broad concept. Notice that UX is not the same as the user

interface or as interaction design. Don’t conflate those concepts with UX,

despite that being common in the industry today.

There are seven UX “proof points,” reflecting moments in the cycle from

someone’s first awareness of a product all the way to its disposal or

replacement. The cycle of seven proof points is shown in Figure 10.

Each of these

points is an

opportunity for

stakeholder value

delivery, but many

teams tend to focus

only on daily use,

with perhaps some

consideration of

the installation or

time-of-purchase

experience. Each of

these seven points

is a chance to

differentiate the

user experience of

your solution from that of your competitors. Use the proof points to structure

your discussions with stakeholders about what they value or to categorize your

stories and requirements. The proof points also have uses beyond Value-Driven

Delivery, such as a way to structure a set of use cases for your product. This is

a simple model, but it is useful in many situations because the proof points

span the entire solution life cycle.

The HEART framework

Originally created at Google,6 the HEART framework for assessing user

experience measures a user’s Happiness, Engagement, Adoption, Retention,

and Task success.

5 This definition is very similar to other existing definitions, such as The
International Standard on Ergonomics of Human System Interaction, ISO 9241-210.
6 See Measuring the User Experience on a Large Scale: User-Centered Metrics for
Web Applications, Kerry Rodden, Hilary Hutchinson, and Xin Fu:

http://static.googleusercontent.com/media/research.google.com/en//pubs/archi
ve/36299.pdf

Third-party brands and names are property of their respective owners.

Figure 10

http://static.googleusercontent.com/media/research.google.com/en/pubs/archive/36299.pdf
http://static.googleusercontent.com/media/research.google.com/en/pubs/archive/36299.pdf

Value-Driven Delivery

www.construx.com | Best Practices White Paper 25

Each of the dimensions is elaborated using a table of goals, signals, and

metrics:

• Goals: High-level, conceptual results that motivate use of the system

• Signals: Observable indicators of goal satisfaction level

• Metrics: Obtainable, quantitative measures for each signal

The goal-signal-metric paradigm is similar to the classic goal-question-metric

paradigm first published by Victor Basili, Caldiera Gianluigi, and H. Dieter

Rombach in 1994. Both paradigms contain conceptual, operational, and

quantitative levels in succession. In Value-Driven Delivery, the HEART

framework provides useful categories for specifying and measuring stakeholder

value delivery.

It is also possible to use the HEART categories as categories for Planguage

statements. In that case, the Ambition, Scale, Meter, Minimum, Target, and

Outstanding keywords can be used to specify stakeholder value within the

HEART categories.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 26

Summary

Value-Driven Delivery seeks the answers to three simple, but not at all easy,

questions:

1. Who are your stakeholders?

2. What do they value?

3. What are you doing in the next two weeks or less to provide value to

them?

Without a continuous, purposeful focus on value delivery, teams often end up

emphasizing output without understanding how well the things they deliver

satisfy their stakeholders and solve the underlying problems. Whether you are

using a traditional sequential approach to development, Agile or Lean methods,

or a hybrid approach, Value-Driven Delivery can create the proper focus from

the executive suite to the individual contributor level and help you ensure that

work is done in the order and manner that maximizes stakeholder value

delivered.

Value-Driven Delivery

www.construx.com | Best Practices White Paper 27

Contributors

Erik Simmons, Senior Fellow

erik.simmons@construx.com

mailto:erik.simmons@construx.com

Value-Driven Delivery

www.construx.com | Best Practices White Paper 28

About Construx

Construx Software is the market leader in practical, research-based training

and consulting that supports software professionals. Construx was founded in

1996 by Steve McConnell, respected author and thought leader on software

development best practices. Steve’s books Code Complete, Software

Estimation, and other titles are some of the most accessible books on software

development, with more than a million copies in print in 20 languages. Steve’s

passion for advancing the art and science of software engineering is shared by

Construx’s team of seasoned consultants. Their depth of knowledge and

expertise have helped hundreds of companies solve their software challenges

by identifying and adopting practices that have been proven to produce high

quality software faster and with greater predictability.

◼ For more information about Construx’s support for software development

best practices, email us at consulting@construx.com or call us at +1(866)

296-6300.

◼ Sample Construx’s OnDemand training for free at https://cxlearn.com.

◼ Review Construx’s instructor-led training offerings at

http://www.construx.com/seminars.

mailto:consulting@construx.com
https://cxlearn.com/
http://www.construx.com/seminars

© 2018, Construx Software Builders, Inc. All rights reserved.

Construx Software Builders, Inc.

10900 NE 8th Street, Suite 1350

Bellevue, WA 98004

U.S.A.

This white paper may be reproduced and redistributed as long as it is reproduced and redistributed

in its entirety, including this copyright notice.

Construx, Construx Software, and CxOne are trademarks of Construx Software Builders, Inc. in the

United States, other countries, or both.

This paper is for informational purposes only. This document is provided “As Is” with no warranties

whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular

purpose, or any warranty otherwise arising out of any proposal, specification, or sample. Construx

Software disclaims all liability relating to use of information in this paper.

