

WHITE PAPER

The Agile Boundary

Version 1, August 2021

The Agile boundary demarcates the parts of an organization

that are using Agile practices from the parts that are not.

Understanding the boundary, its placement, and how it can

be strategically evolved over time is essential to effective

Agile transformation and improved organizational

performance.

This white paper was downloaded from

www.construx.com/whitepapers
Construx

The Agile Boundary
 Construx

 ii

www.construx.com | White Paper

Copyright

© 2021, Construx Software Builders, Inc. All rights reserved.

Construx Software Builders, Inc.

10900 NE 8th Street, Suite 1300

Bellevue, WA 98004

U.S.A.

This white paper may be reproduced and redistributed as long as it is reproduced and

redistributed in its entirety, including this copyright notice.

Construx and Construx Software, are trademarks of Construx Software Builders, Inc. in the

United States, other countries, or both.

This paper is for informational purposes only. This document is provided “As Is” with no

warranties whatsoever, including any warranty of merchantability, noninfringement, fitness

for any particular purpose, or any warranty otherwise arising out of any proposal,

specification, or sample. Construx Software disclaims all liability relating to use of information

in this paper.

The Agile Boundary
 Construx

 iii

www.construx.com | White Paper

Contents

Introduction ... 1

Defining the Agile Boundary ... 2

Creating a Strategy and Roadmap for Agile Boundary Expansion 5

Working across the Agile Boundary .. 7

Conclusions .. 12

The Agile Boundary
 Construx

 1

www.construx.com | White Paper

Introduction

Organizations naturally contain boundaries of different types, such as team

membership, functional organization, and physical sites. These boundaries can

evolve over time in response to events and actions, such as reorganizations,

mergers and acquisitions, and changes to business strategy and practices.

We have found that organizations struggle to connect disparate groups and work

effectively across the boundaries among them. “Silos” are frequently criticized, but

even silos offer benefits as well as drawbacks.

This white paper addresses one specific organizational boundary that is related to

Agile adoption. The Agile boundary divides the parts of an organization that are

using Agile approaches from the parts of the organization that are not. The Agile

boundary is dynamic, and the percentage of the organization inside the Agile

boundary typically expands over time as more people and groups adapt to working

in Agile ways. However, this expansion is often haphazard and relatively unplanned,

which can lead to uneven progress, frustration, lack of perceived benefits, and

efforts that “die on the vine.”

To help organizations avoid such problems, this white paper addresses the

following topics:

◼ Defining the Agile boundary

◼ Creating a strategy and roadmap for Agile boundary expansion

◼ Working across the Agile boundary

The Agile Boundary
 Construx

 2

www.construx.com | White Paper

Defining the Agile Boundary

Hybrid Development Is Ubiquitous

One school of thought over the last two decades is that an organization must be

100% Agile to thrive. The alternative to Agile is often described as a specious

scenario consisting of a 100% sequential, or “waterfall” approach.

In reality, the 100% Agile and 100% sequential approaches are both unrealistic.

More than a half-century ago, Winston Royce wrote about the nonviability of a

purely sequential approach, saying it is “risky and invites failure.”1 Even in 1970,

Royce recognized the need for flow back and forth between adjacent activities, as

well as combinations of activities such as system test and requirements that tend to

be further apart.

Organizations that attempt to be 100% Agile struggle to work coherently at longer

time scales, meet regulatory or safety requirements, or manage hardware and

software co-development. Business requires both predictability and the ability to

respond to change.

A business must be able to match the rate of change in its environment, based on

factors such as new technology, changing customer needs, increasing complexity,

actions of competitors, etc. These factors vary in intensity across business domains,

so the necessary responses by organizations will also vary. If an organization cannot

keep pace with change, it inevitably trends towards irrelevance and loses to

competitors who are able to keep pace with change.

Agile is not an all-or-nothing proposition. A balance between Agile and sequential

approaches is often the best solution.

There Is Always an Agile Boundary

Once an organization has begun to use Agile, there is always an Agile boundary.

The Agile boundary is most often contained within the organization itself. But even

when an entire organization has adopted Agile, it is very likely that a few of its

customers, suppliers, or partners within its ecosystem will not have. So, the

questions become where exactly to locate the Agile boundary, how to work across

it effectively, and how to evolve it over time.

1 Winston Royce, Managing the Development of Large Software Systems,

IEEE Wescon, August 1970.

The Agile Boundary
 Construx

 3

www.construx.com | White Paper

Agile Beginnings

At the start of Agile adoption, the Agile boundary will encompass just a small

portion of an organization. Because Agile practices have been motivated and driven

primarily by software development over the past 20 years, the first foray into Agile

practice will probably be within the software development portion of the

organization. At this early stage, it is uncommon to see other business functions

inside the Agile boundary.

Agile often enters an organization through a small group of highly motivated

champions. In this sense, Agile is an innovation within the organization and its

champions are from the Innovator and Early Adopter populations described within

the discipline of Diffusion of Innovations.2 These Innovators and Early Adopters are

dedicated, daring, influential, and intrinsically motivated to see the new Agile

practices succeed. The Agile boundary appears soon after they begin their work,

defined by their interpersonal and organizational networks, the new vocabulary

they use, and the novel concepts and practices they espouse. Innovations are, by

nature, different from what existed before. It is these differences that characterize

the boundary and the populations on either side.

At the beginning, the Agile boundary tends to serve a protective function, creating

a space in which new practices can be learned and practiced in relative isolation

from the rest of the organization. This seems sensible, but it results in immediate

friction between the software development team inside the Agile boundary and

business units and existing business practices that are outside the Agile boundary.

Numerous mismatches are possible when:

• Senior management perceives a lack of predictability and transparency

• Product management continues to use large batch sizes for new work

• The organization makes premature promises to customers

• The organization cannot shorten its long release cycles even after software

development has shortened development cycles

• Etc.

These conflicts are not sustainable, so it is paramount to define the Agile boundary

in a way that avoids the collapse of the fledgling Agile effort.

If Agile adoption has already progressed beyond this scope in your organization,

extend your search for the current boundary. Use these tactics to find it:

• Follow both formal (org chart) and informal networks, especially those used

by influencers within your organization. Ask known Agile practitioners for

help in locating the other practitioners in their networks.

2 Everett Rogers, Diffusion of Innovations, Free Press, 2003.

The Agile Boundary
 Construx

 4

www.construx.com | White Paper

• Look for social networking channels devoted to Agile, brown-bag sessions,

intranet websites, book clubs, and communities of practice.

• Publicize your efforts via push (email, newsletter, etc.) and pull (website)

sources. Invite all Agile practitioners into a new forum or community.

• Analyze existing process descriptions, flow diagrams, and value stream

maps for functions and groups inside and outside the boundary. These

functions and groups may be suppliers, sources, recipients, or consumers.

These techniques and others will help you find the portions of the organization

within or about to be within the Agile boundary.

Knowing the extent of the existing Agile boundary is key for creating a strategy for

where and when to expand the boundary. Organic adoption is fine at the

beginning, but delaying the establishment of consistent practices for Agile adoption

is counterproductive.

The Agile Boundary
 Construx

 5

www.construx.com | White Paper

Creating a Strategy and Roadmap

for Agile Boundary Expansion

After determining the location of the current Agile boundary, expand it strategically,

which has numerous benefits compared to a hands-off approach. However,

stepwise, linear planning is not suitable to Agile boundary expansion.

Organizations Are Complex Adaptive Systems

Organizations and their people form a complex adaptive system that is not

deterministic and fully analyzable no matter how much time and effort you devote

to the task. Use an approach that seeks to understand what is happening now and

what is feasible in the immediate future.

A three-year Gantt chart describing each step for becoming Agile will fail. This does

not mean that all planning is useless—it means that different planning is required.

Use Agile to create Agile. Agile boundary expansion is a combination of planned

and opportunistic work. The key is determining the current state of the organization

and feasible next steps.

Because Agile usually first appears within the software development organization,

the first step is broader Agile adoption in that organization. It then becomes

necessary to move the Agile boundary beyond software development.

Software test and QA are an early expansion area if those functions were not part of

the initial Agile adoption. Cross-functionality and team autonomy are greatly

enhanced by test and QA helping to create releasable increments according to a

robust Definition of Done (DoD).

Next, look upstream and downstream from software development. On the

upstream side, include product management so that the inputs to the software

development teams are sized and prioritized in a way to enable Agile development.

On the downstream side, focus on Operations and DevOps to improve integration

and release capabilities and accelerate business value delivery. This is a common

pattern. What is right for your organization might be different.

Start with the Value Stream

Looking at the activities that are upstream and downstream from the existing Agile

boundary is a feasible first step, but analyzing your organization’s complete value

stream is best for strategic boundary expansion. The most effective place to expand

The Agile Boundary
 Construx

 6

www.construx.com | White Paper

the Agile boundary might be distant from software development. Contiguous

expansion outward from software development is not always the best approach.

Another approach is to expand according to product or product line rather than by

organizational function: transforming an organization “vertically” rather than

“horizontally.” Horizontal transformation—function by function across the entire

organization—can create islands of new practice within a sea of legacy practice,

which can wash away the new islands before change can take hold.

Organizations can couple this vertical form of Agile boundary expansion with

environment and architecture migration, especially cloud migration. All the

necessary functions shift to an Agile approach at once but in numbers limited by

the product(s) chosen for migration. The application environment and architecture

shift at the same time.

Capture your strategy as a high-level roadmap to guide your expansion efforts,

accepting that changes will be necessary and unforeseen opportunities will arise.

Make the roadmap more detailed and specific in the near term (one quarter) and

decreasingly detailed out to a year. Opportunities beyond a year are rarely stable

enough, even as aspirational goals. The organization is complex, and every action

you take will have both unintended and intended side effects. As one charismatic

senior executive has put it, “The plan is the plan—until we change the plan.”

The Agile Boundary
 Construx

 7

www.construx.com | White Paper

Working across the Agile

Boundary

As described earlier, the location of the Agile boundary will change with time but

there will always be a boundary somewhere. You must be able to work across the

Agile boundary, wherever it happens to be.

Boundaries can contain, exclude, and filter. To work across the Agile boundary,

determine what is permitted to flow across it (in one or both directions), how often

it flows, and by what channel. Also determine what is prevented from crossing the

boundary.

For example, software architecture is often housed in a single organization that

serves all the software development teams. The availability and turnaround time

needed to support Scrum or another Agile approach might be difficult for the

architecture team to support because they are working according to an older

model with longer lead times and a sequential approach to architecture definition.

The boundary between architecture and software development requires careful

definition to satisfy the needs of both groups. The situation requires a protocol for

how to request service, a way to supply the necessary background information and

data for the request, a protocol for how the architecture team prioritizes and

resources requests, etc. Must the same architect service a particular project or team

across time? On which side of the boundary does the architecture specification live?

What working agreements are necessary, and what connections across the

boundary do they imply?

If these elements are difficult to get right, that might indicate that the portion of the

boundary in question is a candidate for being changed sooner rather than later. In

this example, pulling some of the architecture team inside the Agile boundary

might make the most sense.

Agile software development has several characteristics that help determine the

nature of the Agile boundary and how to work across it effectively. These

characteristics define what is different about an Agile approach in comparison to a

more (but not completely) sequential approach.3

3 Steve McConnell, More Effective Agile: A Roadmap for Software Leaders, Construx

Press, 2019. See especially Chapter 2, What’s Really Different About Agile? The table

shown next is from that chapter.

The Agile Boundary
 Construx

 8

www.construx.com | White Paper

Sequential Development Agile Development

Long release cycles Short release cycles

Most end-to-end development

work performed in large batches

across long release cycles

Most end-to-end development work

performed in small batches within

short release cycles

Detailed up-front planning High-level up-front planning with

just-in-time detailed planning

Detailed up-front requirements High-level up-front requirements with

just-in-time detailed requirements

Up-front design Emergent design

Test at the end, often as separate

activity

Continuous, automated testing,

integrated into development

Infrequent structured collaboration Frequent structured collaboration

Overall approach is idealistic,

prearranged, and control-oriented

Overall approach is empirical,

responsive, and improvement-

oriented

These characteristics have many implications for what information must flow across

the Agile boundary, how often, and via what channels.

Short Release Cycles and Small Batches

Short release cycles and small batch sizes inside the Agile boundary mean that the

inflow and outflows across the boundary will occur with greater frequency but with

smaller scope than before. Existing working agreements should be adapted to the

increased frequency. Also, check for a mismatch between the small, more frequent

outflows and standing meetings and processes for reviewing progress. Downstream

processes and practices for release can be substantially affected by more frequent

code deliveries, whether or not those deliveries translate into releases.

High-Level Up-Front Planning with Just-in-

Time Detailed Planning

Planning with reduced up-front detail challenges existing norms for investment

decisions and milestone reviews. A more incremental decision model creates new

opportunities for flexibility in product management but might be seen as risky in

The Agile Boundary
 Construx

 9

www.construx.com | White Paper

some organizations. To counter these problems, relax or adapt milestone exit

criteria and move to a more incremental funding model—there’s no need to fully

fund a program on fractional data. You can also create a parallel life cycle and

funding mechanism for “Agile projects” vs. “traditional projects,” but even better is

tailoring the funding mechanism to the nature of the system being built.

Even though the “iron triangle” is unrealistic in any nontrivial setting, fixed-bid

contracts that dictate scope, date, and investment constrain organizations. Iron

triangle thinking can create serious issues even when an entire organization has

adopted Agile internally. The best course of action is to change contract

deliverables from outputs to outcomes and to switch from large monolithic

contracts to smaller incremental contracts. Bringing customers inside the Agile

boundary might prove challenging but can afford the greatest benefits of all.

High-Level Up-Front Requirements with Just-

in-Time Detailed Requirements

Many teams create too much requirements detail initially. Much of that detail is

concentrated in areas where the knowledge is best—such detail is readily available

and easy to write. However, capturing this known detail does little, if anything, to

reduce project risk. If an organization correctly identifies which requirements can

and should be written up front vs. left for later, it will improve time to market and

reduce the waste of writing a lot of detail in the hope it will be useful someday.

On nearly every project, some requirements must be specified early and others

cannot be known and specified early without incurring too much risk of later

change. Agile reduces speculation, leaving specification of anything that can be

postponed until near the time it will be used in construction.

Adapting life cycle milestone exit criteria is a part of addressing requirements work

across the Agile boundary, but communication links across the boundary is also

important. When product management is outside the Agile boundary,

communication between the development team and product management must be

adapted to increased frequency and smaller batch size. Without this capability,

requirements validation will be slow to nonexistent— the project will suffer from

delays, wrong requirements, missed requirements, incorrect assumptions, and

substantial rework.

Emergent Design
Emphasis on emergent design rather than detailed, up-front design creates issues

across the Agile boundary even though the design function is normally contained

within the Agile development teams.

The Agile Boundary
 Construx

 10

www.construx.com | White Paper

In organizations where a centralized architecture function exists outside the Agile

boundary, architects operate in an episodic, service-provider fashion with teams,

with a single architect assigned to service a given team. Agile teams will require

numerous small interactions rather than a single large interaction at the beginning

of the project. This creates resource loading and scheduling challenges for the

architecture organization. Architecture organizations will benefit from adopting

Kanban to clarify work queues, limit work in progress (WIP), and help prioritize their

time. Kanban is also an effective way to communicate status and WIP across the

Agile boundary.

A similar issue occurs when a User Experience (UX) team is centralized and located

outside the Agile boundary. Practices in Lean UX are becoming more common, but

many UX groups operate similar to centralized architecture groups, helping teams

in a “service provider” fashion. Again, Kanban adoption makes sense, but in both

cases, the question becomes why those functions should be centralized versus

made part of the Agile development teams to increase development team

autonomy.

A third design challenge occurs when the product management organization is

outside the Agile boundary. If Agile development teams must work with product

management to validate design decisions internally and with external stakeholders,

once again scheduling and resourcing will be issues. Long feedback loops will delay

decision making during development and lead to rework. Organizations can

establish product councils, management review committees (MRCs), Customer

Circles, and similar structures to expedite these reviews and prevent long feedback

cycles. The groups can convene on a regular cadence or on demand.

Continuous, Automated Testing, Integrated

into Development

Testing in a continuous, automated way that is integrated with the development

environment is challenging if the test function is partially or completely located

outside the Agile boundary. Communication of what is coming when prevents

delays and ensures testing readiness. Agile development teams that reprioritize on

a Sprint-by-Sprint basis using Scrum, or even more frequently when using Kanban,

can create thrash for the test organization as it plans, resources, and instruments its

tests and testing frameworks.

The same sort of transactional service model that challenges architecture and UX is

even more challenging for test. For this reason, test is among the most important

functions to pull in across the Agile boundary. If embedding test within

development is not possible, organizations should increase communications across

the boundary. Test personnel will listen in on planning activities and daily stand-ups

The Agile Boundary
 Construx

 11

www.construx.com | White Paper

done by the development teams and review Kanban boards to see up-to-date

information on the state of the work in progress.

Generally, a test organization outside the Agile boundary must step up to work on

smaller batches with greater frequency—this is not a simple task because of the

lead time that is endemic to test development. Automation helps, especially for

regression testing. Shifting some testing to developers can also be effective, using,

for example, Acceptance Test-Driven Development (ATDD). Also, organizations

realize benefits by improving their use of DevOps and the tool chain to reduce

delays in the interval from pull request to production.

Frequent Structured Collaboration and

Empirical, Responsive, Improvement-Oriented

Environment

The factors in these final two areas depend on cultural foundations—the

organization’s beliefs, values, and history influence whether issues across the Agile

boundary exist in these areas and how large those issues are.

In an organization that values individual expertise and achievement, the Agile

boundary provides one more reason for an individual to work in isolation. If the

organization reinforces this behavior pattern in annual reviews by rewarding

individual contributors over teams, no shift towards increased collaboration and

responsiveness will occur.

Organizations that have learned to bury failure or simply blame other teams cannot

expect success in transitioning to an improvement-oriented environment without

addressing the root cultural issues. The Agile boundary provides a convenient

enabler for such blaming and ignoring, because people on each side of the

boundary think and act differently from one another based on different perceptions

of what is correct and appropriate. Any boundary runs the risk of dividing a

population into “them” and “us”—this is not peculiar to the Agile boundary. But this

contrast illustrates what might be the most difficult, and most important, aspect of

Agile transformation and Agile boundary expansion.4

4 A topic so important that it is addressed in a separate Construx white

paper titled Organizational Transformation.

The Agile Boundary
 Construx

 12

www.construx.com | White Paper

Conclusions

◼ The Agile boundary appears as soon as an organization begins using Agile

practices, whether that is driven by grass-roots adoption or by a planned Agile

transformation.

◼ Once it exists, there is always an Agile boundary, even if the entire organization

adopts Agile.

◼ Organizations benefit greatly from taking a strategic approach to expanding the

area inside the Agile boundary over time.

◼ The nature of the differences between traditional sequential development and

Agile development characterizes the populations inside and outside the Agile

boundary.

◼ To increase overall effectiveness, organizations can use a combination of

bringing more people and functions inside the Agile boundary and enabling the

flow of information and work products across the boundary.

◼ The challenges presented by the Agile boundary relate to Agile’s smaller batch

sizes, more frequent release cycles, and a just-in-time emphasis in planning,

requirements, and design. Deeper cultural elements also play an important role.

The Agile Boundary
 Construx

 13

www.construx.com | White Paper

Construx
Construx Software is the market leader in software development best practices

training and consulting. Construx was founded in 1996 by Steve McConnell,

respected author and thought leader on software development best practices.

Steve’s books Code Complete, Rapid Development, More Effective Agile, and other

titles are some of the most accessible books on software development with more

than a million copies in print in 20 languages.

Steve’s passion for advancing the art and science of software engineering is shared

by Construx’s team of seasoned consultants. Their depth of knowledge and

expertise has helped hundreds of companies solve their software challenges by

identifying and adopting practices that have been proven to produce high quality

software—faster, and with greater predictability. For more information about

Construx’s support for software development best practices, contact us at

consulting@construx.com, or call us at +1(866) 296-6300.

mailto:consulting@construx.com

