

WHITE PAPER

The Five Most
Common Gaps in
Scrum Adoptions
Jenny Stuart, VP Consulting, Construx Software

Erik Simmons, Senior Fellow, Construx Software

Melvin Perez, Senior Fellow, Construx Software

Version 1.0 2, October 2018

Scrum is the most widely used Agile framework in the software

development industry today. One of Scrum’s advantages is that it

provides a significant amount of structure. The framework

includes specific roles, events, and artifacts that work together. It

aspires for transparency, self-empowerment, and empirical

process control.

Construx works with many organizations across a diverse set of

industries. We find that many teams encounter a consistent set of

challenges with Scrum due to similar gaps in their Scrum

adoption. This paper describes those gaps and shares resources

that will help you address them.

This white paper was downloaded from
www.construx.com/whitepapers Construx

The Five Most Common Gaps in Scrum Adoption
 Construx

 ii

www.construx.com | White Paper

Copyright
© 2018, Construx Software Builders, Inc. All rights reserved.

Construx Software Builders, Inc.
10900 NE 8th Street, Suite 1350
Bellevue, WA 98004
U.S.A.

This white paper may be reproduced and redistributed as long as it is reproduced and
redistributed in its entirety, including this copyright notice.

Construx and Construx Software, are trademarks of Construx Software Builders, Inc. in the
United States, other countries, or both.

This paper is for informational purposes only. This document is provided “As Is” with no
warranties whatsoever, including any warranty of merchantability, noninfringement, fitness
for any particular purpose, or any warranty otherwise arising out of any proposal, specification,
or sample. Construx Software disclaims all liability relating to use of information in this paper.

The Five Most Common Gaps in Scrum Adoption
 Construx

 iii

www.construx.com | White Paper

Contents
#1 Missing or Insufficient Focus on Quality ...1

#2 Insufficient Staffing of the Scrum Roles ...2
#3 Insufficient Backlog Refinement ..3

#4 Missing or Ineffective Retrospectives ...4

#5 Lack of Focus on Incremental Value Delivery ...5
Contributors ..7

The Five Most Common Gaps in Scrum Adoption
 Construx

 1

www.construx.com | White Paper

#1 Missing or Insufficient Focus on
Quality
The Scrum Guide states that Scrum Team members must have a shared Definition of
Done (DoD). However, it provides no specific and concrete guidance on what should
be in your DoD. The Scrum Guide is intentionally vague because the details do, and
should, vary widely from team to team.

Many of the Scrum teams that Construx works with do not have a shared Definition
of Done that everyone understands, agrees to, and uses. Some common anti-patterns
Construx sees are:

n Missing Definition of Done. Many teams Construx encounters have never
established a Definition of Done.

n Ignored Definition of Done. The team has a definition, but it is not used or
referred to during the Sprint to determine whether an item is ready for the Sprint
Review.

n Weak Definition of Done. A Definition of Done that omits quality or addresses it
only superficially. For example, development considered complete without unit
testing, functional testing, any documentation, and other elements necessary for
high-quality work.

n The Mandate from On High. Someone somewhere in the organization provides a
Definition of Done without consulting with the teams. The imposed definition
often contains inappropriate items and items that individual teams are incapable of
completing within the Sprint boundary.

A Definition of Done should state the teams’ expectations for the following:

n Testing (unit, integration, and system)

n Reviews (requirements, design, and code)
n Automation

n Tool use (static code analysis, security checks, and code style checks)

n Documentation1 (as-built architecture specifications, design documentation,
user documentation, release notes)

n Deployment infrastructure readiness (release notes, deployment scripts)

1 Additional information on incremental documentation creation can be
found in Construx’s Agile Documentation Practices white paper.

The Five Most Common Gaps in Scrum Adoption
 Construx

 2

www.construx.com | White Paper

Each team should establish definitions that are unambiguous and measurable—such
as “At least 70% unit test coverage for new code”—and put in place mechanisms to
monitor them.

The Definition of Done should bring the software produced within a Sprint to a
potentially releasable state or as close as the team can possibly get to that state. Any
items preventing deliverables from being potentially releasable should become
process improvement items for the team and organization.

Figure 1 shares a resource that discusses the Definition of Done and provides an
example.

Figure 1 Resources that Support Improving Quality

Please contact Construx for this resource.

#2 Insufficient Staffing of the
Scrum Roles
Scrum defines three roles: Product Owner, Scrum Master, and Team Member. Each of
these roles has a unique set of defined responsibilities that complement the other
roles’ responsibilities. In combination, these three roles provide checks and balances.
These checks and balances should drive evolutionary improvement by exposing and
resolving issues that impede team efficiency and effectiveness. The common anti-
patterns Construx sees are:

n Missing Product Owner. The Scrum Team attempts to work without anyone in
the Product Owner (PO) role. As the Scrum Guide states, “The Product Owner is
responsible for maximizing the value of the product.” A team without a PO lacks
sufficient guidance on what the business and stakeholders need. Because the PO
guides the work of a team of up to nine people, it is a vital role for organizations to
staff.

n Inactive Product Owner. Someone is named as the PO but does not participate
with the team sufficiently, if at all. This is the same general pattern as the missing
Product Owner, but in this case, the team can identify a specific person as PO.

n Proxy Product Owner. The right person doesn’t have the time to be, or interest in
being, a PO, so someone else is designated a Proxy PO. This can work, but it is a
rare exception when it works well. In general, the Proxy PO cannot provide the
necessary detail and day-to-day information necessary for Scrum to be successful.

n The “Oh By the Way” Scrum Master. Many teams have a Scrum Master who was
the person most willing (or even least unwilling) to take on the role. Sometimes
this is better than having no Scrum Master, but usually these people aren’t
interested in becoming a great Scrum Master. Rather, they are interested in being

Definition of Done Practice Paper

The Five Most Common Gaps in Scrum Adoption
 Construx

 3

www.construx.com | White Paper

great developers, testers, or technical writers. Also, they are often given the
guidance that a Scrum Master’s only role is to run the meetings. A great Scrum
Master who understands the role brings much more than that to the team, the PO,
and the organization.

n Command and Control Scrum Master. A command and control Scrum Master will
tell the team what to do rather than enabling them to become a self-empowered
team, thereby greatly impeding learning.

For Scrum to be successful, it is crucial to staff the Product Owner and Scrum Master
roles appropriately. Organizations are rarely in a position to hire new staff when they
transition to Scrum. Instead, it is a matter of identifying how the organization can
best fill each role by using its existing people.

Figure 2 outlines a set of resources that can help you fully staff the Scrum roles and
provide the professional development for those individuals to be successful.

Figure 2 Resources for Staffing Scrum Roles and Developing the Staff

These resources are publicly available.

#3 Insufficient Backlog Refinement
The Scrum Guide states that “Product Backlog refinement is the act of adding detail,
estimates, and order to items in the Product Backlog,” and it says that this process
should consume no more than 10% of the team’s time on an ongoing basis. Although
backlog refinement is not a defined event in Scrum because there is no set time in the
Sprint at which it must occur, it is crucial for successful Scrum work.

Insufficient backlog refining makes everything in Scrum harder. The Product Backlog
is the fuel for the Scrum engine. Without good fuel, teams have a hard time working
effectively and efficiently. Common symptoms include:

n Sprint Planning takes longer than necessary. One team described Sprint Planning
as taking two days for a two-week Sprint, which is far too long. Sprint Planning
should focus on the how we will build it because the what we’re building has been
sufficiently understood in refining. Good refining ensures Sprint Planning is a
focused, efficient, and effective event.

n There are excessive questions about the details of the work during the Sprint.
Some teams have described being unable to complete work in a Sprint because
they did not know or understand important details of what they were building.
Scrum relies on just-in-time conversations rather than detailed, speculative

Staffing Scrum Roles White Paper

Product Owner Professional Development Path.

Scrum Master Professional Development Path

The Five Most Common Gaps in Scrum Adoption
 Construx

 4

www.construx.com | White Paper

specifications, but when these conversations become excessive, the team cannot
make rapid forward progress.

n Work consistently slips into the next Sprint. Many teams bring in stories that are
too large to be brought to their Definition of Done within a Sprint. Instead,
sufficient refining must be done for large stories to be decomposed into items that
are small enough to fit in a Sprint.

n The team is unable to do any parallel work. Scrum is a “team sport,” and a good
Scrum team attacks work in parallel. If, for example, the testers cannot build test
cases in parallel with developers writing the code, this is often because the team
lacks a sufficiently shared understanding of what they need to build. Refinement
must yield a clear, common, and coherent understanding of the work to be done
in a Sprint.

n The team experiences excessive downstream rework. When lots of required
changes are identified in the Sprint Review or after the Sprint is complete, it is
usually a sign that the work was not well understood by the entire Scrum Team.
Change should occur before items enter the Sprint, during refinement. It is
expensive to rework an item, sometimes multiple times, before getting it right. As
mentioned above, Scrum is designed for conversations and flexibility—Construx
encounters many teams that could vastly improve their performance by reducing
easily preventable rework through better conversations and backlog refinement.

Construx recommends that teams spend one hour twice a week refining the Product
Backlog. Two one-hour sessions provides the best balance of flexibility and time to
focus on the task.

#4 Missing or Ineffective
Retrospectives
The Sprint Retrospective is a process and teamwork inspection event—a powerful
tool that can make Scrum teams great. But many teams have retrospectives that do
not generate significant improvement, and some teams stop holding retrospectives
when they discover, correctly, that poor retrospectives are a waste of time. Common
issues that reduce or eliminate the benefits of retrospectives include:

n Failing to address core issues. The important issues are never exposed, discussed,
or addressed because of cultural barriers, interpersonal issues, organizational
politics, line management reporting conflicts, or other reasons. The changes
identified might address some symptoms of the underlying problem, but that
problem is never solved.

n Failing to identify a change the team will make in the next Sprint. Holding a
retrospective without identifying an improvement misses the entire purpose of the
retrospective. It is not sufficient to talk about what worked and what didn’t.

The Five Most Common Gaps in Scrum Adoption
 Construx

 5

www.construx.com | White Paper

Starting with the 2017 revision, the Scrum Guide mandates that teams identify at
least one high-priority improvement during a retrospective for inclusion in the
next Sprint Backlog. This change points to the frequency of teams failing to hold
retrospectives that result in immediate improvement actions.

n Identifying vague improvements. Actions such as “We should do better refining”
or “We should meet our Sprint commitments more often” are hard to implement
because they are so broad and unmeasurable.

Teams should take these vague improvement ideas and brainstorm specific,
measurable changes that they can try so as to improve. For example, a team might
state, “Let’s update our Definition of Ready to include ‘No stories larger than an
eight can be brought into a Sprint,’” when it believes that the size of stories is
causing them to spill over from Sprint to Sprint.

n Holding the same retrospective over and over and over. The most common
retrospective technique is asking people what worked and what didn’t work, often
using the “go around the table” approach. Any technique used repeatedly quickly
becomes boring and is unlikely to generate unique, valuable insights. Scrum
Masters should utilize a number of different retrospective techniques to keep team
members engaged and to support an open, safe environment.

n Not looking at past performance. It is useful to mine the team’s historical data and
share it in retrospectives to help the team see patterns. Data like the three-Sprint
moving average velocity, initial total hour estimates vs. actual, % of Product
Backlog Items committed vs. delivered, and so on can be illuminating.

n Never or rarely making the changes identified in the retrospective. An identified
change can be impactful only if the change is actually made. Teams can add action
items related to the change to the Sprint Backlog so that they are visible and so
that any work necessary to implement the change can be estimated and resourced.

n Agreeing to a laundry list of issues. Teams should identify one valuable change,
perhaps two, that they will make in the next Sprint. Agreeing to a long list of
changes generally means that no change will be made.

Retrospectives should be fun and energizing, and they should result in continuous
improvement via Scrum’s inspect and adapt mantra.

#5 Lack of Focus on Incremental
Value Delivery
Many teams throughout the industry use Scrum, but few of them create potentially
shippable software at the end of each Sprint. Teams that do create shippable software
for each Sprint often have disconnects with their stakeholders that have prevented
the team from delivering what is most valuable first.

The Five Most Common Gaps in Scrum Adoption
 Construx

 6

www.construx.com | White Paper

Scrum places a lot of responsibility on the Product Owner to understand the team’s
stakeholders, discover their needs, properly order the Product Backlog to bring the
highest return on investment to the business, and convey the details to the team so
that they can quickly and continuously deliver stakeholder value.

Some common problems that Construx sees often are:

n Missing key stakeholders.

n Failing to deeply understand what the stakeholders value.

n Not staying current with changing stakeholder values.

n Not exposing key assumptions in decision making and prioritization.

n Breaking large pieces of work down in ways that don’t deliver value
incrementally. For example, major epics given to component teams that don’t
deliver customer value until each epic is completed by every single team.

Scrum is an excellent delivery engine. The Product Owner and Product Backlog are
the steering mechanism for that engine. A significant amount of work is necessary to
ensure that the right things are placed at the top of the backlog.

Figure 3 outlines a set of resources that can help you understand, capture, and
communicate value to and within the Scrum team.

Figure 3 Resources for Understanding Value and Sharing it with the Team

The white paper and “Product Owner Career Path” are publicly available. Please
contract Construx for the practice papers.

Value-Driven Delivery White Paper

Landing Zone Practice Paper

Product Owner Career Path

Requirements Decomposition Practice Paper

Refining Practice Paper

The Five Most Common Gaps in Scrum Adoption
 Construx

 7

www.construx.com | White Paper

Contributors

Jenny Stuart, VP Consulting

jenny.stuart@construx.com
+1(425) 636-0108

Erik Simmons, Senior Fellow

erik.simmons@construx.com
+1(425) 636-0100

Melvin Perez, Senior Fellow

melvin.perez@construx.com
+1(425) 636-0120

The Five Most Common Gaps in Scrum Adoption
 Construx

 8

www.construx.com | White Paper

Construx
Construx Software is the market leader in software development best practices
training and consulting. Construx was founded in 1996 by Steve McConnell,
respected author and thought leader on software development best practices. Steve’s
books Code Complete, Rapid Development, and other titles are some of the most
accessible books on software development with more than a million copies in print in
20 languages.

Steve’s passion for advancing the art and science of software engineering is shared by
Construx’s team of seasoned consultants. Their depth of knowledge and expertise has
helped hundreds of companies solve their software challenges by identifying and
adopting practices that have been proven to produce high quality software—faster,
and with greater predictability. For more information about Construx’s support for
software development best practices, contact us at consulting@construx.com or call us
at +1 (866) 296-6300.

