
1
Return on Software:
Maximizing the Return on
Your Software Investment

3

Almost every software organization on the planet is in the unenviable position of hav-
ing to do the best it can with limited resources. We could always do more, and we could
probably do it better, if we just had more people, more time, or more money. How do we
get the most out of the resources we do have? How do we maximize our “bang for the
buck”? That’s what this book is about—helping you, the practicing software profes-
sional (or, the software professional-in-training), make purposeful, appropriate, busi-
ness-conscious technical decisions so that you and your employer can get the most out
of the limited resources you do have. This chapter explains why software professionals
need the concepts and techniques in this book and gives a survey of the rest of the book.

Software on Purpose

There are hundreds, if not thousands, of books on how to develop software. Books on
C, C++, Java, CORBA, XML, databases, and the like abound. However, most software
organizations don’t have a very good track record with the software they develop. After
studying thousands of software projects, the Standish Group observed that about 23% of
software projects fail to deliver any working software at all [Standish01a]. Unfortu-
nately, these projects aren’t being cancelled until well after their original schedule and
budget have been exceeded.

02Tock_CH01.qxd 7/23/04 8:12 AM Page 3

4 Part One Introduction and Foundations 1—Return on Software

The Standish study also showed that for projects that do deliver software, the av-
erage one is 45% over budget, 63% over schedule, and delivers only 67% of the origi-
nally planned features and functions. Based on our industry’s track record, a software
project that’s estimated to take 12 months and cost $1 million can be reasonably ex-
pected to take closer to 20 months and cost about $1.5 million, while meeting only two
thirds of its requirements.

Tracy Kidder [Kidder81] reports that about 40% of the commercial applications of
computers have proven uneconomical. These applications don’t show a positive return
on investment in the sense that the job being automated ended up costing more to do
after the system was installed than it did before. Return on investment is defined in
Chapter 8, but, simply, those organizations paid more to develop the software than the
software ever earned back for them.

Assuming the Standish and Kidder data can be combined, the resulting statistics are
rather grim. If 23% of all software projects are cancelled without delivering anything,
and 40% of the projects that do deliver software are net money losers, then about 54%
of all software projects are counterproductive in the business sense. Over half the time,
the organizations that paid for software projects would actually have been better off fi-
nancially had they never even started those projects.

The total amount of money spent on software development in the United States has
been estimated to be more than $275 billion annually [Standish01b]. This means a size-
able amount of money is being wasted every year—around $63 billion in cancelled soft-
ware projects alone. The money wasted annually could be as much as $149 billion if
projects not showing a positive return on their investment are included. These numbers
may even be conservative when you consider that larger projects are much more likely
to fail than smaller projects [Standish01b], [DeMarco99]. Be aware that this cost data is
for the United States only; there’s a lot of software development going on outside the
United States. There’s not necessarily any reason to believe that software organizations
outside the United States are any more—or any less—successful, so the worldwide an-
nual results could be staggering.

There might be a million and one different reasons for the poor software project per-
formance observed by the Standish Group. Maybe

■ The customer’s requirements and specifications were incomplete, vague, or
ambiguous.

■ Those requirements kept changing throughout the project.
■ Bad design decisions were made.
■ The staff didn’t have enough expertise in new technologies used on the project.
■ The projects weren’t given enough resources to be successful.
■ The projects weren’t sufficiently planned and managed.
■ The project’s externally imposed deadlines were unrealistic to begin with.
■ . . .

02Tock_CH01.qxd 7/23/04 8:12 AM Page 4

Underlying all of these reasons is the more fundamental reason of bad business decisions
being made. Either consciously or unconsciously someone decided to

■ Not provide the project team with complete, precise requirements
■ Allow the requirements to change throughout the project without considering—or

maybe even being aware of—the effect of requirements change on project success
■ Use an inappropriate design
■ Not properly address—or even consider—the risks and uncertainties new

technologies impose on software projects
■ Not provide enough resources for the project to be successful
■ Not sufficiently plan or manage the project
■ Impose unrealistic deadlines on the project
■ . . .

In spite of there being so many books on how to develop software, there aren’t many books
on why that software is being developed in the first place. Knowing why the software is
being developed will help decision makers make better business decisions. This book
doesn’t say anything about how to develop software. It’s all about why, and why not.

Waste Not, Want Not

Even in the best of financial times, a software organization shouldn’t be sloppy or waste-
ful with its resources: people, money, and time. There will always be more functions that
could be added to the existing software if there were just a few more people around to
do the work. There will always be more new software that could be developed if we just
had a bit more money. There will always be a few more defects in existing systems that
could be fixed if we just had a bit more time to fix them.

When financial times get tough, there are even fewer people around to do the work.
There is also less money. But getting the work done quickly is even more critical than
before. In tough financial times, it’s even more important for the organization to use its
resources wisely. A wasted person-day, a wasted dollar, or a wasted calendar-day will al-
ways be just that: wasted. As resources get scarcer, it becomes that much more impor-
tant to get the best return out of your software investment.

This book is about getting the most out of your software investment. A lot of time
and money has been spent on software since the first programs were written. Some of it
was spent wisely, but some of it was not. Regardless of whether it will be spent wisely
or not in the future, people will continue to spend time and money on software. So how
will you know if your organization’s time and money are being well spent? How can you
find out if you’d get more return from investing your limited resources in some other
way? When your boss asks you, “Is this the best way for us to be spending our limited
time and money?” how can you answer in a way that gives your boss confidence you re-
ally know what you’re talking about?

Waste Not, Want Not 5

02Tock_CH01.qxd 7/23/04 8:12 AM Page 5

6 Part One Introduction and Foundations 1—Return on Software

The Primary Message

This book is about engineering economy, it’s about aligning software technical decisions
with the business goals of the organization. Many software professionals not only don’t
know how to look at the business aspects of their technical decisions, they don’t even
know that it’s important to do so. Decisions such as “Should we use eXtreme Program-
ming or should we use the Rational Unified Process on this project?” may be easy from
a purely technical perspective, but those decisions can have serious implications on the
business viability of the software project and the resulting software product. From my
own experience teaching object-oriented development, I’ve asked more than 1,500 stu-
dents why they were learning object-orientation. Reasons such as “It will help me de-
velop higher quality software, quicker” or “It will be good for the company’s bottom
line” were extremely rare—fewer than 100 students total ever gave this kind of answer.
The vast majority of the students answered, essentially, “It’ll look good on my resumé.”

In another case I was developing software to monitor radiation at nuclear power
plants. Part of that software needed a sorting routine. I wrote a simple insertion sort rou-
tine and had that part of the system running in a matter of hours. A coworker insisted on
developing a QuickSort routine because “everybody knows that QuickSort is better than
insertion sort.” At that time (early 1980s) reusable QuickSort routines weren’t available;
if you wanted one, you had to write it yourself. Unfortunately, QuickSort is a recursive
algorithm, and the programming language we were using, Fortran-IV, didn’t support re-
cursion. My coworker spent more than a week developing QuickSort in Fortran-IV. Only
later did he realize that the list that needed sorting averaged only about 30 entries and
was predominantly sorted to begin with. Small lists that are already mostly sorted cause
QuickSort to have extremely poor performance, typically worse than simpler algorithms
such as insertion sort. Moreover, sorting happened in this system fewer than 50 times a
day. Even if QuickSort did perform better than insertion sort, it would take decades for
the company to recover its investment. My coworker’s effort turned out to be a pretty
big waste of the company’s money and time.

The object-orientation and QuickSort examples are just two simple examples. Over
the years I’ve seen technical decisions be inconsistent with the organization’s business
goals far more often than I’ve seen them be consistent. The software industry is hardly
unique, however. This isn’t the only time in history when the business impact of techni-
cal decisions was questionable. Eugene Grant [Grant90] wrote the following, referring
to Arthur Wellington (a pioneer in the field of engineering economy).

Railway location obviously is a field in which many alternatives are likely to be
available. Nevertheless, Wellington observed what seemed to him to be an almost
complete disregard by many locating engineers of the influence of their decisions on
the prospective costs and revenues of the railways. In his first edition (1877) he said
of railway location, “And yet there is no field of professional labor in which a lim-
ited amount of modest incompetency at $150 per month can set so many picks and
shovels and locomotives at work to no purpose whatsoever.”

02Tock_CH01.qxd 7/23/04 8:12 AM Page 6

A Secondary Message: Software Engineering Versus Computer Science 7

The average salary of software professionals today is well over $150 per month, but are
our decisions really that much better than the railway-locating engineers’ of the late
1800s? As software professionals, we had better be concerned with the impacts of our
technical decisions on our employer—I’d say that Wellington’s “a limited amount of
modest incompetency” describes the contemporary software industry quite well.

This book bridges the gap between software technical decisions and business goals.
The concepts and techniques in this book will allow you—the practicing software pro-
fessional—to align your technical decisions with the business goals of your organiza-
tion. This will help you waste less of your employer’s limited time and money. The fun-
damental question that software professionals should always ask is, “Is it in the best
interest of the organization to invest its limited resources in this technical endeavor, or
would the same investment produce a higher return elsewhere?”

A Secondary Message: Software Engineering
Versus Computer Science

Many software professionals like to refer to themselves as “software engineers.” Un-
fortunately, simply wanting our work to be considered engineering and continually say-
ing that it is doesn’t make it so. In several U.S. states, including New York and Texas
[TBPE98], the term “engineer” is actually a legally reserved word. Those who inappro-
priately, or even inadvertently, misuse the term—such as calling themselves a software
engineer—without meeting legally defined criteria can be subject to civil or criminal
penalties. Similarly, under the law in Canada no one can call himself or herself an engi-
neer unless licensed as such by the provincial engineering societies.

Another message in this book is the relationship between software engineering and
computer science. There has been a fair amount of debate over the similarities and dif-
ferences between the two. Instead of endlessly discussing opinions, we can look at “first
principles”—what do scientists believe it means to be a scientist and what do engineers
believe it means to be an engineer?

Science is defined as [Webster94]

a department of systematized knowledge as an object of study; knowledge or a sys-
tem of knowledge covering general truths or the operation of general laws esp. as ob-
tained and tested through scientific method.

The Accreditation Board of Engineering and Technology (ABET) is the recognized au-
thority for accrediting engineering and technology degree programs at colleges and uni-
versities in the United States. ABET defines engineering as [ABET00]

the profession in which a knowledge of the mathematical and natural sciences gained
by study, experience, and practice is applied with judgment to develop ways to uti-
lize, economically, the materials and forces of nature for the benefit of mankind.

02Tock_CH01.qxd 7/23/04 8:12 AM Page 7

DeGarmo et al. [DeGarmo93] paraphrase the definition of engineering as

finding the balance between what is technically feasible and what is economically
acceptable.

Arthur Wellington offers a somewhat more lighthearted description [Wellington1887]:

It would be well if engineering were less generally thought of, and even defined, as
the art of constructing. In a certain sense it is rather the art of not constructing; or, to
define it rudely but not inaptly, it is the art of doing that well with one dollar which
any bungler can do with two.

Comparing and contrasting these definitions shows that science is the pursuit of knowl-
edge and engineering is the application of that knowledge for the benefit of people. As
an example, chemistry as a science is concerned with expanding our knowledge of
chemical processes so we can better understand and explain phenomena observed in the
universe. Chemical engineering, on the other hand, applies the knowledge derived from
this “chemical science” to filling human needs. At the core of chemical engineering is
an understanding of the body of chemical theory. In addition, chemical engineering calls
upon the practical aspects of chemical processes, such as the design of pressure vessels
and waste-heat removal mechanisms, together with the use of engineering economy as
the basis for decisions.

The science branch and the engineering branch of a technical discipline are related
but distinct. The science branch is concerned with expanding the body of theoretical
knowledge about that discipline, whereas the engineering branch is concerned with the
practical and economical application of that theoretical knowledge. The following
equation is a simplified description of the general relationship between science and
engineering:

Engineering = Scientific theory + Practice + Engineering economy

People who are recognized engineers (for instance, civil, mechanical, chemical, aero-
nautical) are usually required to take a course in engineering economy as part of their
undergraduate education.

Based on the dictionary definition of science, above, computer science can be
defined as

a department of systematized knowledge about computing as an object of study; a
system of knowledge covering general truths or the operation of general laws of com-
puting esp. as obtained and tested through scientific method.

Based on the ABET definition of engineering, software engineering can be defined as

the profession in which a knowledge of the mathematical and computing sciences
gained by study, experience, and practice is applied with judgment to develop ways
to utilize, economically, computing systems for the benefit of mankind.

So, from the equation above we can derive

8 Part One Introduction and Foundations 1—Return on Software

02Tock_CH01.qxd 7/23/04 8:12 AM Page 8

Software engineering = Computer science + Practice + Engineering economy

Both computer science and software engineering deal with computers, computing, and
software. The science of computing, as a body of knowledge, is at the core of both. Com-
puter science is concerned with computers, computing, and software as a system of
knowledge, together with expanding that knowledge. Software engineering, on the other
hand, should be concerned with the application of computers, computing, and software
to practical purposes, specifically the design, construction, and operation of efficient and
economical computing systems.

The software industry as a whole has shown movement, albeit slow, toward be-
coming a legitimate engineering discipline: true software engineering. For that transi-
tion to fully take place, software professionals will need to learn about—and use—en-
gineering economy as the basis for their technical decisions. This book is an engineering
economy reference book for software professionals. It covers the same topics as would
be found in its typical industrial engineering counterpart. Largely, only the examples
have been translated into a software context.

An Overview of the Book 9

Lack of engineering economy isn’t the only issue preventing software from being
generally recognized as a legitimate engineering discipline. For other perspectives on
this topic see, for example, [Hooten90], [McConnell03], [Shaw90], and [SWEBOK01].

There will always be a need for qualified computer scientists to continue the ad-
vancement of computing theory. To be sure, every recognized engineering discipline has
a corresponding science that is populated by dedicated researchers. The computer sci-
ence curriculum is appropriate for meeting this need. But the software industry also has
a distinct need for [Ford91]

a practitioner who will be able to rapidly assume a position of substantial responsi-
bility in an organization.

Providing those qualified practitioners should be the primary goal of software engineer-
ing education.

An Overview of the Book

Here is a quick look at the topics that are covered in this book. The book is divided into
eight parts:

■ Part I: Introduction and Foundations. This part introduces the subject and
provides the background needed to understand the rest of the book. Topics include
the fundamental concepts of business decisions, the business decision-making
process, the time value of money (interest), financial equivalence, and ways to
characterize proposed solutions including present worth, internal rate of return,
and discounted payback period.

02Tock_CH01.qxd 7/23/04 8:12 AM Page 9

■ Part II: Making For-Profit Business Decisions. In this part, the basic mechanics
of making business decisions in for-profit organizations are presented. Specific
topics are for-profit decision analysis, the concept of economic life and its impact
on planning horizons, and two special cases in for-profit decision analysis:
replacement decisions and asset-retirement decisions.

■ Part III: Advanced For-Profit Decision Techniques. This part presents
additional concepts and techniques that may be included in a for-profit decision
analysis. These techniques don’t always need to be applied; you would only use
them when you need more precision in the decision analysis. The topics in this
part are inflation and deflation, depreciation, general accounting, income taxes,
and the consequences of income taxes on business decisions.

■ Part IV: Making Decisions in Government and Nonprofit Organizations. This
part explains the concepts and techniques for decision making in government
agencies and in not-for-profit organizations. Specific topics are benefit-cost
analysis and cost-effectiveness analysis.

■ Part V: Present Economy. In this part, the concepts and techniques of
break-even analysis and optimization analysis are discussed.

■ Part VI: Estimation, Risk, and Uncertainty. Estimation is an essential part of
business decision analysis. This part goes into detail about the concepts and
techniques of estimation and explains risk and uncertainty and how they can
influence, and be addressed in, decisions.

■ Part VII: Multiple-Attribute Decisions. Parts I through VI explain how to make
decisions when there is one decision criterion, money. Money will usually be the
most important decision criterion, but it is often only one of several important
decision criteria. This part presents several different techniques for addressing
more than just one decision criterion, or attribute, in a decision analysis.

■ Part VIII: Summary. This part summarizes the book.

Summary

Almost every software organization that has ever existed has had to deal with limited re-
sources. However, these same software organizations have tended to not be very effi-
cient or effective with the resources they do have. About 23% of all software projects
are cancelled without delivering any usable software at all. Of the software projects that
do deliver, they tend to run about 45% over budget, 63% over schedule, and satisfy only
67% of the original requirements.

There may be many specific reasons for this level of performance, however they al-
most all boil down to one underlying reality: Inappropriate decisions are being made
somewhere in the organization. Maybe the inappropriate decision was to do the project
at all. Maybe the inappropriate decision was to provide insufficient funding, inadequate

10 Part One Introduction and Foundations 1—Return on Software

02Tock_CH01.qxd 7/23/04 8:12 AM Page 10

staff, poor requirements, or overconstrain the project schedule (or all of these com-
bined). Maybe the inappropriate decision was about how to plan or manage the project.
Maybe the project team members themselves made inappropriate decisions. By being
more careful about aligning software technical decisions with business goals, software
organizations can better maximize the return on their software investment.

The alignment of technical decisions with business realities is also at the core of the
difference between software engineering and computer science. Science is about ex-
panding knowledge, and engineering is about applying that knowledge to build, operate,
and maintain efficient and economical systems. Making technical decisions that align
with the business realities is at the heart of software engineering.

This book is about getting the most out of your software investment. It’s about help-
ing you, the practicing software professional (or, the software professional-in-training),
make purposeful, appropriate, business-conscious technical decisions so that you can
get the most from the limited resources you do have. After learning the concepts and
techniques in this book, if your boss were to ask you, “Is this the best way for us to be
spending our limited time and money?” you could answer that question in a way that
gives them confidence that you really know what you are talking about.

The next chapter explains why businesses exist and how they “work” in a finan-
cial sense.

Self-Study Questions

1. A software project has been estimated to cost $850,000 and take 10 months. Given
the project outcomes from the Standish Group report mentioned at the beginning of
the chapter, if the project completes at all what will its cost and schedule more likely
turn out to be?

2. Name at least one software-intensive company that was in business in the year 2000
that isn’t in business today. When did they go out of business? Why did they go out
of business?

3. Name at least one software-intensive company that was in business in the year 2000
that is much smaller today (fewer employees, smaller market share, etc.) than they
were then. What happened to the company between then and now? Why are they so
much smaller now than before?

4. Can you describe a software project that was a net money loser for an organization?
Who was that organization? What was the project? When did it happen? How much
money do you think was spent on the project? How much, if any, do you think the
software project recovered? Justify your answers.

Self-Study Questions 11

02Tock_CH01.qxd 7/23/04 8:12 AM Page 11

02Tock_CH01.qxd 7/23/04 8:12 AM Page 12

