

B E S T P R A C T I C E S W H I T E P A P E R

Succeeding with Geographically Distributed Scrum

Jenny Stuart, Vice President of Consulting, Construx Software

Version 2, March 2018

Contributors

 Melvin Perez, Senior Fellow

Alex Sloley, Senior Fellow

When organizations adopt Agile throughout the enterprise, they

typically apply it to both large and small projects. The gap is that most

Agile methodologies, such as Scrum and XP, are team-level workflow

approaches. These approaches can be highly effective at the team

level, but they do not address large project architecture, project

management, requirements, and product planning needs. Our clients

find that succeeding with Scrum on a large, geographically distributed

team requires adopting additional practices to ensure the necessary

coordination, communication, integration, and architectural work. This

white paper discusses common considerations for success with

geographically distributed Scrum.

This white paper was downloaded from

www.construx.com/whitepapers

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 2

Contents
Establish Co-Located, Cross-Disciplinary Teams .. 3

Prefer Feature Teams .. 4

Establish a Project-Wide Definition of Done .. 4

Converge Frequently ... 5

Implement Release Planning .. 5

Define a Requirements Process ... 6

Address System Architecture Implications .. 7

Implement a Multi-Level Testing Approach ... 7

Document Appropriately ... 8

Invest in Travel .. 9

Contributors ... 10

About Construx .. 10

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 3

Establish Co-Located, Cross-Disciplinary Teams
Most of the companies that Construx works with are geographically distributed, with at
least two, and often six or more major locations. For most large organizations, having
sites around the world is simply the way that business is done today.

While some companies initially established multiple sites to conduct “follow-the-sun”
development, this model has not proven successful in practice. Most organizations have
found the best way to successfully use multiple locations is to divide the work into
logical chunks for each location. Whenever possible, they establish teams in each
location that have end-to-end responsibility.

Software development is a human endeavor and requires communication and
coordination between team members. The figure below shows how communication
decreases as distance between team members increase.

1
Figure 1 Communication decay over distance

When teams are distributed around the world, communication and coordination is
significantly limited, becoming slow and time consuming. Organizations that have the
most success with geographic distribution create teams in each location that focus on
specific products, features, components, or other pieces of work that are as
independent as possible. Each team includes the Product Owner, Scrum Master, and all
members of the Development Team.

Whenever this is not possible, teams need to put in place additional practices and
infrastructure to support the necessary level of communication and coordination.

1 Mascitelli, Ronald. Building a Project-Driven Enterprise: How to Slash
Waste and Boost Profits Through Lean Project Management. Technology
Perspectives, 2002.

5%

10%

15%

20%

25%

10 20 30 40 50 60

Distance Between Team Members

Feet

Probability of Communicating
at Least Once Per Week

(without mandatory meetings)

Adapted from: Building a Project-Driven Enterprise, by Ronald Mascitelli

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 4

Prefer Feature Teams
Whereas component teams focus on a layer in the architecture (the database, the user
interface, and so on) or on a component (the kernel), feature teams include staff who
can cross all components of a system to deliver fully tested, potentially shippable
increments of user value.

Use of feature teams simplifies dependency management and coordination between
teams. Some of the major benefits of feature teams include:

n Better cycle time through reduced handoffs. Since the feature team can
complete an entire end-user element of user value, every sprint can result in
something meaningful to the user. Component teams, on the other hand, require
handoffs throughout the layers in the application before meaningful user value is
present.

n Improved code/design quality. Perhaps unexpectedly, the general industry
experience is that using multiple feature teams who work on shared components
creates pressure to keep the code modular, maintainable, and well tested. This is
an advantage over component teams, which tend to perpetuate obfuscated code,
since they have the tribal knowledge on how it works.

n Simplified planning and tracking. Planning and tracking is much more complex
when the output of multiple component teams is needed to produce meaningful
user value. When features can be given to a single team, progress tracking is
simpler.

Organizations and product teams should seek to form feature teams wherever possible.
The most common approach to this is to create a set of feature teams that have
representatives from the various component teams.

Establish a Project-Wide Definition of Done
A frequent issue with large Scrum projects is the lack of a common Definition of Done2
(DoD) across all teams. Without this, the quality practices vary widely from team to
team. For example, one team is doing test driven development and including its system
testing in the same sprint. Another team does not automate unit testing, and its system
testing occurs in the subsequent sprint. This lack of consistency makes it hard to
understand the state of the product and to track progress toward delivery.

To address this inconsistency, establish a minimum set of criteria (Definition of Done)
that teams must meet to consider a Product Backlog Item (PBI) complete within a
sprint. Individual Scrum teams can build upon this standard DoD with specific items they
need beyond the shared fundamentals the project team establishes.

2 See Construx’s Definition of Done Practice Paper for further information
on what is commonly included in an individual Definition of Done.

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 5

Converge Frequently
Integrating completed work and validating it with the Product Owner is a fairly straight
forward activity for a single Scrum team. The importance of this frequent convergence
does not go away for a large, distributed team, but it does become more complex.

If you have 25 Scrum teams, how often do they integrate into the mainline? The answer
depends on your situation. A team with continuous integration and a significant amount
of unit and system test automation might integrate PBIs from individual Scrum teams
into the mainline throughout the sprints. Teams that rely solely on manual system
testing will struggle to keep a high quality mainline with that approach.

The goal is to converge as frequently as possible for your project team given its
situation. Most teams do not have the automation in place to practice continuous
convergence. In that case, teams might integrate each sprint or establish convergent
points after a set number of sprints, when all of the teams integrate their completed
work together. This fully converged product can then be reviewed by the Product Owner
Council or its equivalent.

Using long convergence points increases the risk that integration issues will be
discovered late. Teams using this approach should invest in the automation, continuous
integration infrastructure, and technical practices necessary to introduce continuous
convergence. Continuous convergence ensures that a potentially releasable product is
available at all times.

Implement Release Planning
The most common recommendation that Construx makes for large Scrum project teams
is the adoption of release planning. Release planning is a working session that includes
at least the Product Owners, Scrum Masters, technical and quality representatives, and
relevant Subject Matter Experts (SMEs).

Release planning3 results in a shared understanding of the vision for the release, overall
prioritization guidance, cross-team working agreements, allocation of the Product
Backlog(s) to teams, and agreed-upon completion criteria for work that crosses teams.

The complexity of your project will determine the details of how often release planning
occurs, who participates, where it occurs, and what types of planning happen above and
below it. The requirements process used for the project also has an influence.

3 For more details, see Construx’s Release Planning white paper.

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 6

Define a Requirements Process
For small Scrum teams, the requirements process is clear—a Product Backlog is
maintained by a Product Owner and feeds work to the team. But how does it scale?
What happens with a 250-person team working on a product or product suite? Isolated
Product Backlogs are likely to result in a disjointed product. For most teams, a single,
shared Product Backlog with views for individual teams works well.

Project teams need to determine the process they will use to identify and prioritize
epics, decompose epics to stories, allocate epics and/or stories to team(s), and validate
their acceptance. An example project workflow is shown in Figure 2.

Figure 2 Example project workflow

One common approach is to use a Chief Product Owner and a Product Owner Council.
The Chief Product Owner (CPO) is the ultimate decision maker at the product level. The
Product Owner Council (POC) includes all Product Owners and relevant SMEs. In most
organizations, the POC meets once or twice a week for the following:

n reviewing priorities, especially at the product level

n discussing and refining epic level requirements and acceptance criteria

n decomposing epics for upcoming sprints

n verifying the epic level acceptance criteria are complete

n identifying and discussing dependencies

n allocating the backlog to teams

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 7

n tracking overall progress

n reviewing and revising the release plan

A distributed Scrum team needs to have the right people participating in requirements
and effectively decomposing larger pieces of work across all of the teams.

For teams that have a remote PO, consider investing in a Behavior Driven Development
(BDD) approach to documenting acceptance criteria for user stories. This structured
requirements approach reduces ambiguity and ensures alignment between the
Development Team and Product Owner.

Address System Architecture Implications
Construx’s 10 Keys to Successful Scrum Adoption white paper discusses the need to
steward the architecture on Scrum projects. We believe there is a balance between too
much architecture (over-engineering a system and wasting time creating things that are
not need) and too little architecture (not building fundamental underpinnings of the
system and finding later on that it is too weak to support the objectives for the
project).

Large, geographically distributed teams need to ensure there is enough architectural
guidance so that individual teams have what they need. If teams are building duplicate
functionality, releasing updated API’s that cause unexpected failures in other
components, or creating unique approaches for sending data through the system, then
your project has a gap in its system architecture guidance and oversight.

Large projects need someone (a single architect or virtual team4) who is actively
involved with the teams to provide guidance, support the creation of a high-level
architecture description, and trouble shoot issues.

Implement a Multi-Level Testing Approach
One common pitfall with Scrum at scale is that individual project teams validate their
functionality is working, but insufficient focus and attention is spent on validating the
end-to-end system.

For example, Construx once worked with a team which was doing an excellent job of
testing at the team level. They had 75% unit coverage of the code, automated
integration test suites, and system testing of the PBIs completed by the team. The gap
was the limited resources validating the product from the user interface through the
business layer and into the databases. Without this, they had insufficient visibility into
the actual completeness of the major epics they were building. As they invested in staff
in this area, they discovered their project was months behind schedule.

4 See Construx’s Virtual Architecture Team Practice Paper for more
information.

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 8

Large, distributed Scrum teams typically find that they need these two parallel testing
activities:

n Team-level testing. Individual teams validate that the PBIs they have completed
are integrated and work within the overall product. This includes unit, integration,
and system testing of those PBIs. The expectations here are typically captured as
the Definition of Done.

n Product-level testing. A product level test team executes the overall product to
validate that end-to-end customer requirements are working, ensure the overall
product is stable, identify regressions caused by new functionality, and perform
non-functional testing (performance, scalability, load, etc.). This testing does not
replace the testing done by each Scrum team; rather, it supplements it and focuses
on how changes impact the end-to-end product.

Having a two-prong testing approach helps the individual teams focus on the work they
are doing without neglecting the stability of the overall product.

Document Appropriately
The adoption of Agile methods, such as Scrum, reduces the amount of documentation
that project teams need to produce. Small, co-located teams can rely on stories as a
reminder to have the necessary conversations before and/or during individual sprints.

This approach is difficult to scale to large, geographically distributed projects. These
project teams often have dependencies on one another but are separated by distance
and time.

Documentation is one solution to the distance and time problem in communication.
Documents address the need to communicate to someone else (or to ourselves) at some
future time and/or in some other place. Code level documentation helps a future
maintainer or the original author remember why a particular design approach was
selected. Requirements documents capture information needed by developers and
testers to build and validate the software.

Agile methods seek to reduce the need for formal documentation by putting people
together in the same place working on a small bit at the same time. This increased face-
to-face communication by all parties reduces the need for documentation.

When Scrum projects scale to hundreds of people and/or across multiple geographic
locations, we are adding distance and time back in. These project teams need to
determine what documentation is necessary to enable communication. For example, we
might create an architecture document to ensure everyone (on this project and future
projects) understands how the components of the system work together; an API
document might capture the interfaces (and changes to those interfaces) so that teams
can work as independently as possible; or user acceptance testing might be added to

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 9

user stories so that a remote team can create test cases that are reviewed before the
sprint begins.

Wikis or other infrastructure should be adopted to make capture, communication, and
storage of the information simple.

Invest in Travel
Software development is a human endeavor and relies heavily on the relationships
between people. This was true in more traditional development approaches, such as
waterfall, and it is still true with Scrum. Whenever there are dependencies between
teams or coordination needed, it works better when the people know and trust each
other. One VP that Construx worked with stated it this way, “the half-life of trust is 6
weeks.” And that trust is only built when people have face-to-face interaction. Another
VP commented, “when you start seeing mistakes, it is time to put people on a plane.”
One common issue we see in troubled projects is that the team is fractured, with
mistrust between teams, geographies, functions, or some other divide. Investing in
travel and face-to-face time can be an invaluable way to avoid or minimize issues
before they arise.

Succeeding with Geographically Distributed Scrum

 www.construx.com | Best Practices White Paper 10

Contributors

Jenny Stuart, VP Consulting

jenny.stuart@construx.com
+1(425) 636-0108

Melvin Perez, Senior Fellow

melvin.perez@construx.com
+1(425) 636-0120

Alex Sloley, Senior Fellow

alex.sloley@construx.com
+1(425) 636-0118

About Construx
Construx Software is the market leader in software development best practices training
and consulting. Construx was founded in 1996 by Steve McConnell, respected author and
thought leader on software development best practices. Steve’s books Code Complete,
Rapid Development, and other titles are some of the most accessible books on software
development with more than a million copies in print in 20 languages. Steve’s passion
for advancing the art and science of software engineering is shared by Construx’s team
of seasoned consultants. Their depth of knowledge and expertise has helped hundreds of
companies solve their software challenges by identifying and adopting practices that
have been proven to produce high quality software—faster, and with greater
predictability. For more information about Construx’s support for software development
best practices, contact us at consulting@construx.com, or call us at +1(866) 296-6300.

© 2015-2018, Construx Software Builders, Inc. All rights reserved.

Construx Software Builders, Inc.

10900 NE 8th Street, Suite 1350

Bellevue, WA 98004

U.S.A.

This white paper may be reproduced and redistributed as long as it is reproduced and redistributed

in its entirety, including this copyright notice.

Construx, Construx Software, and CxOne are trademarks of Construx Software Builders, Inc. in the

United States, other countries, or both.

This paper is for informational purposes only. This document is provided “As Is” with no warranties

whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular

purpose, or any warranty otherwise arising out of any proposal, specification, or sample. Construx

Software disclaims all liability relating to use of information in this paper.

