

WHITE PAPER

Retrofitting Legacy
Systems with Unit
Tests
Jenny Stuart, VP Consulting, Construx Software

Melvin Perez, Senior Fellow, Construx Software

Version 1.5 4, July 2018

Automated unit testing improves organizational efficiency. The

sooner defects are found, the more efficiently and effectively

developers can fix them. However, many companies have existing

systems with little to no unit tests, and retrofitting those systems

completely with comprehensive unit tests is impractical. The time

and effort required to perform a complete retrofit make it difficult

to justify and obscures how the organization can get a positive

return on investment with unit testing. This white paper discusses

how to implement unit testing on a legacy system.

This white paper was downloaded from
www.construx.com/whitepapers Construx

Retrofitting Legacy Systems with Unit Tests
 Construx

 ii

www.construx.com | White Paper

Copyright
© 2011-2018, Construx Software Builders, Inc. All rights reserved.

Construx Software Builders, Inc.
10900 NE 8th Street, Suite 1350
Bellevue, WA 98004
U.S.A.

This white paper may be reproduced and redistributed as long as it is reproduced and
redistributed in its entirety, including this copyright notice.

Construx and Construx Software, are trademarks of Construx Software Builders, Inc. in
the United States, other countries, or both.

This paper is for informational purposes only. This document is provided “As Is” with no
warranties whatsoever, including any warranty of merchantability, noninfringement, fitness
for any particular purpose, or any warranty otherwise arising out of any proposal,
specification, or sample. Construx Software disclaims all liability relating to use of
information in this paper.

Retrofitting Legacy Systems with Unit Tests
 Construx

 iii

www.construx.com | White Paper

Contents
Reasons to Retrofit .. 1

Decide the Approach to Building Out Unit Testing .. 2

Create the Necessary Infrastructure ... 4

Build the Tests ... 6

Incrementally Improve System Testability ... 8

Contributors ... 11

Retrofitting Legacy Systems with Unit Tests
 Construx

 1

www.construx.com | White Paper

Reasons to Retrofit
Without automated tests, it does not matter how well designed a system is—
there will be concern about and risks to changing or extending it. This is because
there is not an efficient way to verify that the system is still working and whether it
is being improved or degraded after every major change.

Legacy systems cannot remain unchanged, because the business they support
does not remain the same over time. Common changes include adding new
features, fixing defects, improving the design, optimizing resource usage, and
making the system compliant with a specific regulation or standard. An
organization considering retrofitting automated tests is looking for an effective
way to minimize the risk of breaking the system when these changes are
introduced.

The first aspect to consider is the importance/risk of each system. It is common
to vary the strategy for unit testing based on aspects outlined in the following
table. These aspects can be used to create a “risk profile” for each system.

Table 1 System Risk Level Profile Example

Area Ranking Description

Consequence of error 1=Nuisance only; 5=Risk to human safety

Percentage of clients using
the software

1=Internal use only; 5=Used by 80%+ of
clients

Amount of current/planned
development

1=No active development or little active
development; 5=New product offering

Level of stability/brittleness 1=Easy to modify without unexpected
consequences; 5=Brittle and hard to maintain

Error history 1=Limited field failure reports; 5=Numerous
field failure reports

Score of:

5-10 No investment or limited investment is recommended.

11-18 Some investment is recommended.

19+ Significant investment is recommended.

When determining the amount of the investment in retrofitting automated tests,
take into consideration the opportunity cost. What else could the organization do
with the estimated investment? Most organizations find that adding automated
unit testing initially adds work to their projects, programs, or releases, but they
see major dividends once a meaningful set of tests is in place.

Retrofitting Legacy Systems with Unit Tests
 Construx

 2

www.construx.com | White Paper

Decide the Approach to Building
Out Unit Testing
Construx cautions its clients about trying to completely retrofit existing code
bases with automated unit tests. This is tedious work with productivity costs that
are far too prohibitive for most organizations. Instead, organizations have been
successful with incrementally increasing automated unit-test code coverage.

Select strategies for incrementally building
out coverage
The strategy for retrofitting systems varies from organization to organization, as
well as across the overall portfolio. It is important to evaluate the current portfolio
and make decisions about where and how much to invest in this effort.

The most common strategy used in companies is to add unit tests
whenever code is modified: when new code is added, when defects are fixed,
and/or when code is changed for maintenance. Other strategies include:

n To areas more likely to change. Analyze change history and develop tests for
those areas with high change rates.

n For difficult-to-work-on or error-prone areas of the system. For example, profile
the system and then develop tests for components that have high defect
counts or that have unusually high complexity metrics.

n For critical intellectual property. For example, test algorithms that are essential
to the business domain.

n In reusable code. Identify the components with high fan-in or afferent coupling
metrics and develop automated tests for common usage scenarios.

An example of a risk profile and the selected approaches for testing it are
outlined in the following table.

Retrofitting Legacy Systems with Unit Tests
 Construx

 3

www.construx.com | White Paper

Table 2 Retrofitting Strategy Example

System Investment
Level

Unit Test Retrofitting Strategy

A None No investment will be made in unit testing.

B Medium Unit tests will be developed for the highly complex
and defect-prone areas of the system.
Unit tests will be added for new code, all defect
fixes, and maintenance work.

C High Unit tests will be developed for the highly complex
and defect-prone areas of the system.
Unit tests will be added for new code, all defect
fixes, and maintenance work.
Unit tests will be developed for core business
algorithms.

D Medium Unit tests will be developed for the highly complex
and defect-prone areas of the system.
Unit tests will be added for new code, all defect
fixes, and maintenance work.

E Low Unit tests will be developed for the highly complex
and defect-prone areas of the system.

Consider establishing goals for test coverage
Construx recommends that, as unit testing is added, organizations consider
establishing code-coverage goals and using tools to evaluate the current
coverage.

However, keep in mind that achieving 100% coverage in a legacy system is
typically unachievable and/or does not have a high ROI. Instead, the coverage
goals should be linked to the selected strategy and used to understand if that is
being achieved.

A coverage goal might look more like “x% coverage of all new code, y% of the
code selected for retrofitting of unit tests, and z number of refactored modules.”
For example, in a legacy system with no existing coverage, the goal may be to
get 5% coverage in all areas of the system and 80% coverage of a set of core
algorithms within 18 months.

Retrofitting Legacy Systems with Unit Tests
 Construx

 4

www.construx.com | White Paper

Create the Necessary
Infrastructure
Invest resources
Establishing unit testing infrastructure is work, and the organization needs to
allocate staff and funds for this work. Staff need time to evaluate unit-test and
coverage tools, build unit-test infrastructure, integrate the tools into the build
system(s), and help teams to begin to use the infrastructure. To be successful,
the organization needs to establish a team of people who will have time to
participate in this work. This “unit test adoption team” should include people who
work in different systems, technologies, and languages.

Select unit-testing tools
Establishing the unit-testing infrastructure includes understanding the
language/technology mix in the organization, identifying candidate tools,
evaluating the tools, and selecting a tool set. In most cases, organizations with
legacy systems also have a mix of technologies. This means that establishing a
single standard is impractical. The same unit-testing tools will not work for C#,
C++, Java, COBOL, etc. Fortunately, there are xUnit frameworks available for
virtually all the major programming languages1.

Rather than looking for one tool that fits all its needs, organizations should
establish a set of tools that supports its technology mix. The first step is to
inventory all the languages/technologies in use and determine which unit test
(and coverage) tools are good candidates. The second step is to evaluate the
resulting candidate tools against a set of criteria, including using the tools on
some of the organization’s actual systems. Beyond the selected tools, many
organizations need to consider strategies to create and manage mocks, stubs,
and dependency injection. Most legacy systems require the creation of these to
support effective unit testing.

1 http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Retrofitting Legacy Systems with Unit Tests
 Construx

 5

www.construx.com | White Paper

As unit testing is introduced, organizations might need to consider the legacy
code dilemma2. Although retrofitting tests enables the organization to safely
introduce changes in the future, putting tests in place often requires changes to
the code itself. These changes are mainly needed to break dependencies so that
testing is easier and/or possible. Construx recommends having a secondary
testing mechanism in place to verify that the changes introduced by adding tests
are not breaking the system. For example, a “user robot” mechanism could be
used to record specific characterization tests via the user interface that could be
played back as changes are introduced. Depending on the risk profile, this kind
of tool could be required.

Integrate unit tests with the build system
As the automated unit-test framework is established, the organization must be
sure to integrate it with the build process. The inclusion of these test suites
ensures that the core system functionality maintains a baseline level of quality.
Without this, test builds merely ensure the system builds correctly. It is possible
for a system that builds correctly to fail upon first execution or to have issues in
major functional elements.

The unit tests (or a subset of them) should be automatically executed after each
build, the developers should be able to run the test suite in their local
environments, and the build engineer should be able to run it on demand. Many
organizations also select a code-coverage tool and run it as part of a nightly
build.

2 Working Effectively with Legacy Code, Michael Feathers

Retrofitting Legacy Systems with Unit Tests
 Construx

 6

www.construx.com | White Paper

Build the Tests
After the automated unit-testing tools and strategy for implementing unit testing
have been decided upon, the organization is ready to begin retrofitting its
system(s). At this point, the main question is “What is needed to help the teams
begin building useful unit tests?”

Train staff to perform unit testing
Effective unit testing improves the design of the software. Designing software
components to be tested outside their normal execution environment requires
enabling seams where inputs can be provided, and outputs can be observed.
Having these seams in place enables changing the behavior of the system
without changing the code. It also reduces coupling and improves modularity and
reusability. The creation of code that is testable and good unit tests does not
necessarily come naturally to all software developers. In our work with numerous
companies, Construx has found that the design and unit-testing skills of technical
staff generally varies widely throughout an organization.

As unit testing is deployed across an organization, Construx recommends that
personnel be trained in unit-testing best practices and design for testability
techniques. Some resources that can be used to help increase the staff’s
knowledge of and skills in this area include the following:

n Working Effectively with Legacy Code, Michael Feathers

n Pragmatic Unit Testing in C# with NUnit, Andy Hunt and Dave Thomas

n Pragmatic Unit Testing in Java with JUnit, Andy Hunt and Dave Thomas

n Refactoring: Improving the Design of Existing Code, Martin Fowler

n xUnit Test Patterns, Gerard Meszaros

n Test-Driven Development for Embedded C, James W. Grenning

n Construx’s Developer Testing Boot Camp or Design Boot Camp

Retrofitting Legacy Systems with Unit Tests
 Construx

 7

www.construx.com | White Paper

Account for unit-testing time
The creation of automated unit tests is not free. Management must allow for the
initial time and effort to write unit tests. For developers with extensive experience
with writing unit tests, these costs are usually recouped within the project due to
reduced effort on rework later in the project. For most developers, though,
additional time is needed to think through the process of unit testing and how to
write testable software. There is a learning curve that needs to be accounted for.

In addition, developer estimates commonly underestimate the effort to write new,
testable code with automated unit tests. This is especially true as unit testing is
introduced to an organization.

As unit testing is adopted, it is critical that project plans and schedules explicitly
and, at first, conservatively account for this risk. For teams using Scrum, the
“Definition of Done” must be modified to include the creation of all needed unit
tests. This will change the velocity of the team, and all stakeholders and
customers need to be prepared for this change.

Collect and share coverage data
If the organization decides to collect coverage data, this information should be
made available through a dashboard. It is useful to show the coverage goals,
current coverage, and coverage trends (x% increase/decrease over the last
month). The collection, manipulation, and display of the data should be
automated.

Retrofitting Legacy Systems with Unit Tests
 Construx

 8

www.construx.com | White Paper

Incrementally Improve System
Testability
As unit testing is deployed, organizations typically find areas of their system(s)
are difficult or impossible to unit test. These are often mission-critical areas of the
system or areas that generate a high number of defects. During the unit-testing
rollout, most organizations find that they need to include some level of
investment in reducing technical debt and increasing the testability of the system.

Determining testability
To improve testability, it is useful to first understand the current testability of a
system or component. One common approach is to assess it using the SOCK3
model. This assesses testability in terms of

n Simplicity. How easy is it to derive and execute tests?

n Observability. How easy is it to observe the effects (outputs, post-conditions)?

n Controllability. How easy is it to control the inputs (pre-conditions)?

n Knowledge. How do you determine if a given observed behavior is correct?

Identify error-prone components
Most organizations find that adding unit testing for error-prone components is
extremely valuable. These are typically the components that have a high level of
field-reported (or system-test reported) defects, are difficult to expand, and/or are
brittle. Identify these areas to develop a list of problematic components and
ensure that time and effort is spent to fix those areas. Common ways to
approach this are:

n Use Pareto Analysis to track where clusters of defects arise in a system. Such
tracking usually uncovers patterns that follow the 80/20 rule: 80 to 90 percent
of the defects often come from 10 to 20 percent of the code.

3 The Practical Guide to Defect Prevention, Marc McDonald, Robert
Musson, and Ross Smith

Retrofitting Legacy Systems with Unit Tests
 Construx

 9

www.construx.com | White Paper

n Analyze the code base by looking for routines with the highest complexity counts.
Numerous tools can be run on a code base to measure cyclomatic
complexity, excessively long routines, deeply nested routines, etc. Running
these tools will help identify routines and components that are likely difficult
to maintain efficiently. These are often error-prone areas of the system.

Identifying error-prone components helps focus the creation of unit tests, as well
as any necessary design and code improvements, on the most problematic
areas.

Incrementally refactor the system
Legacy systems often have areas that are difficult to automate. For system
testing, a common problem is that the user interface/presentation layer is not
separated from the business logic. This means that system testing must be done
from the GUI, which results in test cases that are more brittle and harder to
maintain. For unit testing, system components might be deeply coupled and thus
hard to test in isolation.

As organizations invest in automated unit testing, they often need to
incrementally refactor the system to increase the testability of system
components. This refactoring is critical because testable components make it
easier to create unit tests, increase the effectiveness of unit tests, and make
automated smoke and system testing feasible.

As part of this process, it is important to understand the state of the current
system. Legacy code can be highly coupled, and individual units cannot be
tested in isolation. As the organization begins to refactor error-prone components
or reduce technical debt, it needs to evaluate and understand the implications of
those changes and to understand the dependencies between the different parts
of the system. Work then needs to be done to determine how to separate the
dependencies so that the parts of the system to be modified can be changed in
isolation.

Construx recommends that the teams working on each system develop a
“Technical Debt List.” This list records the changes that need to be made in each
component to increase its testability. It can include changes needed to separate
major components or parts of the system to enable the development of unit tests.
The list should be used during project/increment planning to ensure that
refactoring is included in the anticipated work.

Retrofitting Legacy Systems with Unit Tests
 Construx

 10

www.construx.com | White Paper

Reduce technical debt in conjunction with
unit testing
As unit-testing improvements occur, most organizations can leverage this effort
to simultaneously reduce technical debt with little or no additional cost. For
example, a monolithic device driver with complex and unwieldy routines is
difficult both to test and to maintain. On the other hand, modular designs improve
testability and maintainability. Refactoring problematic areas not only makes the
software more testable, it also reduces the organization’s technical debt.

Use Root Cause Analysis to identify possible
improvements
Root Cause Analysis (RCA) is an especially useful technique for systematically
improving individuals’ abilities to design testable software. Developers typically
figure out how to fix a reported defect, often discovering and fixing the root cause
of the defect. However, most developers do not look into the root cause of why
the defect was not discovered during the development phase in the first place.

RCA is a good technique for developers to use to gain insight into weaknesses in
the software’s design and implementation. Analysis of escaped defects often
helps identify areas of inadequate testing caused by issues in the source code
and/or design that make it difficult to write a good automated test. Developers
may find, for instance, that high coupling prohibits the effective isolation of critical
areas. This discovery leads to insights related to designing testable software.

Many organizations find that conducting RCA on high-severity defects can help
to identify areas where refactoring would reduce the complexity of the source
code and increase the testability of the software. Issues identified by RCA are
candidates for the “Technical Debt List” discussed in this white paper.

Retrofitting Legacy Systems with Unit Tests
 Construx

 11

www.construx.com | White Paper

Contributors

Jenny Stuart, VP Consulting

jenny.stuart@construx.com
+1(425) 636-0108

Melvin Perez, Senior Fellow

melvin.perez@construx.com
+1(425) 636-0120

Retrofitting Legacy Systems with Unit Tests
 Construx

 12

www.construx.com | White Paper

Construx
Construx Software is the market leader in software development best practices
training and consulting. Construx was founded in 1996 by Steve McConnell,
respected author and thought leader on software development best practices.
Steve’s books Code Complete, Rapid Development, and other titles are some of
the most accessible books on software development with more than a million
copies in print in 20 languages.

Steve’s passion for advancing the art and science of software engineering is
shared by Construx’s team of seasoned consultants. Their depth of knowledge
and expertise has helped hundreds of companies solve their software challenges
by identifying and adopting practices that have been proven to produce high
quality software—faster, and with greater predictability. For more information
about Construx’s support for software development best practices, contact us at
consulting@construx.com, or call us at +1(866) 296-6300.

