
Professional Development—for Software Professionals

On Site
at your location

OnDemand
online learning

Blended Learning
the best of both worlds

Public Seminars
at our Seattle/Eastside
training center

Training the Way You Want It

OnDemand Learning			 4

Learning Scenarios			 5

Case Studies				 7	

AGILE DEVELOPMENT	 	 	

Scaling Scrum 	 		 	 9 	

Scrum Boot Camp				 9

Scrum Product Owner Boot Camp		 10

Kanban Software Management:
Using Lean Methods and Practices 	 10

Agile Developer Boot Camp 		 11

Scrum Essentials for Leaders 	 	 11

Software Estimation in Depth
for Agile Projects 				 12

Agile Planning and Estimation 		 12

PROJECT MANAGEMENT		

Software Estimation In Depth 		 13

Software Project Management Boot Camp 13

Increasing Software Innovation		 14

Risk Management In Depth		 14

Software Economics Boot Camp 		 15

REQUIREMENTS		

Agile Requirements In Depth 	 	 16

Agile Requirements Modeling		 16

Model-Based Requirements		 17

Requirements Boot Camp 			 17

DESIGN & CONSTRUCTION	

Web API Design and RESTful Web Services 18

Developer Boot Camp			 18

Code Complete Essentials			 19

Design Boot Camp				 19

Model-Based Design 			 20

Design Pattern Essentials			 20

TESTING & QA		

Professional Tester Boot Camp 		 21

Agile Testing for Software Developers	 21

Developer Testing Boot Camp		 22

Total Project Quality			 22

METHODS & PROCESSES		

10X Software Engineering - Teams 		 23

10X Individuals and Interactions	 23

INSTRUCTORS		 		 24

Contents

On-Demand ALL ACCESS PASS
The All Access Pass gives you a year of access to

every software development online offering in the
Construx OnDemand catalog, including many new

offerings that will be added over the next year.
That’s a value of more than $2500!

One year All Access Pass for $599.

GET A FREE 30-MINUTE TRIAL AT cxlearn.com

Choose your learning mode(s)

OnDemand
Learning

Building on 20 years’ experience
delivering classroom training,
Construx now offers industry-
leading OnDemand Learning.

Choose online, OnDemand
Learning to:

•	Provide maximum training
convenience for your team

•	Enable team members to learn at
their own pace, and at the times
and locations of their choice

•	Deliver consistent training to a
geographically distributed team

•	Reward your team with the best
online training in the software
industry, while maximizing use of
your training dollars

Onsite
Training

Construx has helped hundreds of
companies with the highest impact
classroom training in the software
industry.

Choose Onsite training to:

•	Provide a shared experience for an
intact team

•	Maximize learning and immediately
put new skills into practice

•	Facilitate rich interactions among
learners

•	Receive live feedback from
Construx’s expert instructors

•	Reward and inspire your team
with the highest quality software
training experience available

Public
Seminars

Blended
Learning

Experience the most innovative
and impactful training in the
software industry via Construx’s
Blended Learning.

Choose a blended combination
of classroom training and
OnDemand Learning to:

•	Deliver a backbone of software
practice training to your entire
staff, cost-effectively

•	Strategically provide high-
impact classroom training to
the people and teams who will
benefit the most

•	Realize the best possible
combination of training impact
and training value, tailored
by Construx to your specific
training needs

Software professionals say that
Construx public seminars are
an exceptional use of their time
and deliver a great return on
their training investment.

Choose public seminars to:

• Focus on training—away from
office interruptions

• Learn from peers who are
facing the same challenges you
are

• Try a seminar individually,
before bringing the seminar in
for your whole team

• Accelerate your learning in a
focused environment

Contact us today, and let us customize a training program that will best
meet your specific training, scheduling and budgetary requirements.

➤ hello@construx.com l +1 (866) 296-6300 l www.construx.com

3

Construx OnDemand Learning

ALL ACCESS PASS
The All Access Pass gives you a

year of access to every software
development online offering
in the Construx OnDemand

catalog, including many new
offerings that will be added over
the next year. That’s a value of

more than $5000!

One year All Access Pass
for $599.

GET A FREE
30-MINUTE TRIAL AT

cxlearn.com

Code Complete Essentials

Requirements Boot Camp

Scrum Boot Camp

API Design and RESTful Services Agile Requirements

Design Patterns

Product Owner Boot Camp

Total Project Quality

Agile Developer Boot Camp

Risk Management In Depth

4

10X Software Engineering

Software Economics Boot Camp

Steve McConnell’s
Understanding Software Projects

Construx OnDemand Learning

Scenario

Your company has grown by acquiring small companies. Now you
have a staff of 100 technical personnel spread across numerous sites
with 1-15 software professionals per site. You can’t justify sending an
instructor to each location, and the travel cost of bringing all team
members together at one site for in-person training is prohibitive.

Blended Learning Solution

Construx delivers the same high quality OnDemand training to your
staff at every location. This avoids travel costs and builds a shared
understanding and shared vocabulary through a consistent training
experience for team members across the company.

To reinforce the OnDemand training, Construx delivers expert,
in-person training at your central office location to a select group of
leaders and other staff. These individuals receive in-depth training so
that they can perform effectively as thought leaders and coaches.

Learning Scenarios

Learning Scenario #1

Cost Effectively Train a
Geographically Distributed Team

Learning Scenario #2

On-Boarding New Staff Members
Scenario

Your company provides training periodically, and you want new staff
members to come up to speed between in-person training sessions.

Blended Learning Solution

When you purchase in-person training courses from Construx, you’ll
also get full access to the OnDemand version of the course for
additional employees. You can use the OnDemand course to provide
training to team members who were unable to attend the in-person
training. Employees who join the team after the in-person training
occurred can use OnDemand training to get up to speed with their
colleagues. Every team member receives the same high quality
learning content regardless of when they take the OnDemand training.

Customized Training Solutions
Contact us today, and let Construx customize a training solution for
you that optimizes your staff’s professional development and delivers
lasting value for your training investment.

➤ hello@construx.com l +1 (866) 296-6300 l www.construx.com

5

Learning Scenarios

Learning Scenario #3

Customized In-Person Training
to Address Your Specific Challenges
Scenario

Your company is committed to professional development, and you
want to realize maximum benefit for the time your staff spends in
classroom training.

Blended Learning Solution

In-person training is scheduled with one of Construx’s subject
matter experts. Prior to the live training, your staff has access to
the OnDemand version of the course, which they consume before
the in-person class. This enables the staff to begin the in-person
training sharing a solid understanding of the course content. The
in-person classroom time can now focus more intently on company-
specific implementation issues yielding the most significant results.

Learning Scenario #4

Reward Your Staff and Benefit Your
Company with High Quality Training
Scenario

Your company wants to provide professional development for your
staff, but day-to-day project demands always seem to take precedence
over training.

On Demand Training Solution

You purchase All Access Passes to Construx OnDemand training for
your entire technical staff. This allows every team member to take any
of Construx’s OnDemand training modules at any time. If three team
members have a few hours of downtime on a Friday afternoon, they
can get together in a conference room and consume a few OnDemand
training modules related to their current project challenges.

Technical staff views training as a reward—and an affirmation that the
company has a stake in their professional development. Construx’s
state-of-the-art OnDemand training helps your staff feel valued, and
your company benefits from their enhanced skills and morale.

Customized Training Solutions
Contact us today, and let Construx customize a training solution for
you that optimizes your staff’s professional development and delivers
lasting value for your training investment.

➤ hello@construx.com l +1 (866) 296-6300 l www.construx.com

6

Case Studies

Case Studies

Case Study #1

Scaling Agile Across
the Enterprise
Bolstered by its success with small-scale Scrum
projects, a Fortune 500 computer hardware
company hoped that it could transform the
organization by simply replicating its small-
project successes across the enterprise.

If only it were that simple.

After a reality check, the company enlisted
Construx to develop a customized Scrum Boot
Camp seminar that was piloted, refined, and
delivered to the 2500-person staff at sites
worldwide. Construx supported the rollout
with executive briefings, onsite coaching,
and continuous fine-tuning. The result was
a consistent, efficient and fully integrated
adoption of Scrum throughout the enterprise.

Case Study #2

Taking the Team to
the Next Level: Success
with Larger Projects
A medium-sized scientific instruments company
consistently experienced success with project
teams of five to nine members. But projects with
teams of 15-100+ struggled or failed outright.

Construx developed a customized training
program that focused on the unique challenges
of succeeding with Scrum at scale.

Training throughout the company included
team- and management- level best practices
that have proven successful for larger projects.
Our experienced Agile experts also provided
customized coaching and mentoring, and
helped the staff round out their skill sets with
On-Demand training in planning, estimation,
requirements, and quality assurance.

Case Study #3

Customized Agile
Training for a Small Team
A small company in a narrow vertical
market needed to improve its skills in Agile
requirements, in performing the Scrum Master
and Product Owner roles, and in the basics of
Scrum. Their challenges included having a total
staff size of nine people and a modest training
budget.

Construx delivered a customized blended
program that included:

•	Three OnDemand courses that team members
could consume in sections as needed: Scrum
Boot Camp, Agile Requirements, and Product
Owner Boot Camp

•	An onsite, in-person coaching workshop to fine
tune the on-the-ground practices and team
interactions

•	Follow-up support and coaching via phone and
Skype

The blending of OnDemand and personal onsite
training was especially effective for helping the
company identify and address specific issues,
integrate lasting improvements into the team’s
dynamics, and achieve maximum effectiveness
with its Scrum and Agile practices.

7

Case Studies

Case Study #5

Taking a company from
“Scrum, but…” to “Scrum
brilliant”
A global professional services company under-
went an objective assessment of its software
practices and found that its Scrum
implementation was mostly “Scrum, but…”
In order to achieve its critical software
development objectives, the company
prioritized improving staff skills in Scrum and
Requirements.

Construx was enlisted to develop a customized,
company-wide program in Scrum and Agile
requirements that included:

•	 In-person workshops at multiple sites

•	OnDemand courses

•	Personal follow-up coaching by Skype and
email

The OnDemand courses were primarily
intended for on-boarding new staff members
who had missed the in-person workshops. They
also gave the whole staff a convenient way to
review content and refresh the skills developed
in the workshops.

Case Study #4

Expanding Software
Development Capabilities
at a Traditional
Manufacturing Company
The CEO of a traditional manufacturing company
launched an initiative to upgrade the company’s
software capabilities in order to deliver key
functionality in its hardware products. Construx
was selected as the training and consulting
partner with the experience to work effectively
with both software and hardware staff.

The company had identified software estimation
and software project management as its most
significant areas of weakness. Construx helped
the company refine its software estimation and
project management practices, and align them
with the stage-gate development process the
company used for both hardware and software.

Construx then delivered an in-person training
program in software estimation and project
management throughout the company. The
training was targeted primarily to software staff,
and many hardware staff members attended the
training voluntarily.

Case Study #6

Agile Transformation
in a Regulated Industry
A company working under FDA regulation
wanted to adopt Scrum but was uncertain how
to do so without risking non-compliance with
rigorous FDA requirements.

Construx provided customized Scrum training
to the team that had been designated to pilot
Scrum on an FDA-compliant project. After a
highly successful pilot, Construx supported
an incremental Scrum rollout strategy by
providing training and coaching to additional
teams throughout the organization. Internal
stakeholder satisfaction soared, and the
company made a transformational migration
to Scrum while consistently meeting all FDA
regulatory requirements.

8

Scaling Scrum

Scrum has been a successful way for individual teams to deliver value quickly.
As the needs of the business expand beyond what individual teams can accomplish,
how can organizations scale Scrum while remaining agile? How do you scale Scrum to
multi-team projects, multiple geographies, and work that spans multiple iterations? This
two-day course presents tactics used to scale software projects, focusing on techniques
that have shown themselves best suited for scaling Scrum. Using an extended case
study, you will scale Scrum from a single, focused team to a multi-team, multi-national,
distributed project. You will examine scaling tactics from a Scrum perspective including
Lean, Kanban, and Scrum of Scrums. You will learn what has worked and what has not
worked in scaling Scrum, gaining insights from Construx’s extensive experience with

clients around the world as well as from other attendees. [14 PDUs]

Scrum Boot Camp
This seminar provides everything you need to know to ensure your transition

to Scrum is successful. In the years since the Agile Manifesto, Scrum has emerged as the most
popular Agile process for managing software development projects. More companies are
switching to Scrum, but many are struggling. This three-day seminar combines key aspects
from Certified Scrum Master- and Certified Scrum Product Owner-specific training plus
specific best practices based upon the instructor’s direct experience on Scrum transitions and

experience gained from Construx’s consulting engagements. [21 PDUs]

Scaling Fundamentals
• Product vision’s critical contribution to scaling

• Infrastructure and tool sets for scaling

• Project focus and multi-tasking - how to manage

for scaling

• Patterns of scaled work distribution

Agile Scaling Principles
• Building on software projects’ intellectual phases

• Defining clear decision lines

• Setting scope of authority

• Creating collaboration

• Delivering customer facing value consistently

• Maintaining feedback loops

• Living with the hype-disillusionment learning curve

Scrum as a Building Block for Scaling
• Three roles

• Three artifacts

• Four meetings

• Two levels of commitment

Lean Scaling Principles
• Limiting waste

• Early defect detection

• Acknowledging variation

Kanban
• Setting up a pull system

• Creating a work queue

• Setting work in process limits

• Defining classes of service

• Calculating flow time

Technology and Scaling
• Traditional scaling tools

• Web 2.0 support for scaling

• Using instant messaging effectively

• Leveraging shared workspaces

• Electronic meetings—making them efficient and

effective

• Configuration management techniques for scaled

environments

• Build challenges in scaled environments

Architecture’s Role in Scaling
• Using common architecture successfully

• Conway’s law

• Architecting for features vs. components

• Planning to allow the architecture to emerge

• Test-driven architecture

• Handling work in Scrum that does not create user-

visible value

• Addressing work that spans multiple iterations

Team Coordination
• Planning for time together

• Aligning plans and processes

• Creating convergence points

• Defining clear roles and responsibilities

• Building and using common infrastructure

...and more

See complete course description at
www.construx.com/learn

What is Scrum?
• Agile origins, principles, and benefits

• A brief history of Scrum

• Scrum philosophy and theory

• What makes Scrum different?

Why Scrum Works
• A simple process

• A committed, self-managed team

• Transparency: nowhere to hide

• Finishing what you start

• Continual improvement

Scrum Roles
• The Scrum Master

• The Product Owner

• The Team Member

• Stakeholders

• Levels of commitment

Scrum Processes and Meetings
• Release planning

• Sprint planning

• Daily standup

• Sprint review

• Sprint retrospective

Scrum Artifacts
• Product backlog

• Sprint backlog

• Release burndown

• Sprint burndown

Scrum Best Practices
• Timeboxing: Nothing concentrates the mind...

• Commitment: Either do or do not; there is no try

• Working agreements: This is how we do it

• Acceptance criteria and the definition of “done”

• There is no ‘I’ in team		

Spinning Up Scrum
• Selecting the Product Owner

• Creating a product backlog

• Setting up the Scrum team

• Planning the release

• Launching the first sprint

Life During Sprint Time
• A day in the life of a Scrum team

• A day in the life of a Scrum Master

• A day in the life of a Product Owner

Tracking Progress: Scrum Metrics
• Whiteboards or software?

• How is your iteration going?

• Exposing and removing impediments

• When are you going to release?

• Are you improving?

Something’s Rotten: Scrum Smells
• Scrum (Task) Masters

• The Product Dictator

• The tyranny of the urgent

• They’re just not that into it: when the team

fails to meet commitments

• Self-unmanaged teams

• Just give me the fish!

• When burndowns don’t burn down

• The plague known as ‘Scrum-But’

Learning to Fly
• Scrum is simple but not easy

• Best practices are still applicable

...and more

See complete course description at
www.construx.com/learn

Agile Development

9

See complete course description at
www.construx.com/learn

See complete course description at
www.construx.com/learn

Agile Development

It All Starts With a Vision
• The Product Vision

The Product Owner’s View of Scrum
• What Is Scrum?

• How Scrum works

• Scrum roles, processes and artifacts

The Successful Product Owner
• Technical…enough

• Product Owner, Project Manager, or Product

Manager?

• Attributes of successful Product Owners

What Are We Trying To Build?
• What is a requirement?

• The product vision as the top-level requirement

• Three purposes of requirements

• Using requirements to manage risk

• Product versus project requirements

• User stories and acceptance criteria

• The definition of “done” and why it matters

Scrum Product Owner
Boot Camp

The Product Owner role is arguably the most important role in Scrum–and
the most challenging. The Product Owner is part project manager, part product manager,
and part customer advocate. This person must ensure the customer’s wants and needs
are understood while ensuring that the team delivers the greatest-value features as
quickly as possible–all while responding to ever-changing requirements. Ultimately, the
Product Owner owns a Scrum project’s success or failure. Scrum Product Owner Boot
Camp drills down into the detailed information needed to successfully plan releases,
reflect stakeholder priorities, ensure the team builds the right product, and communicate

with marketing, sales, executives, and other project stakeholders. [21 PDUs]

How Will We Build It?
• Successful Scrum projects require planning

• The product backlog

• Creating a product roadmap

• Release planning

• User story mapping

• Incremental delivery via Sashimi implementation

During the Game
• Product backlog grooming

• Sprint planning

• Sprint reviews and retrospectives

• Dealing with change

• Scrum project tracking

Kanban Software
Management: Using
Lean Methods and Practices
Today’s global high tech industry abounds with smart people yet many organizations
continue to struggle to deliver projects on time, on budget, and with high quality.
While people and technology remain part of the equation, much can be gained from
a systematic view of processes. Kanban provides an objective, quantifiable approach
to managing and measuring the flow of work across an organization. Harnessing
concepts from Lean/TPS, Goldratt’s Theory of Constraints, Deming’s Theory of Profound
Knowledge, and Drucker’s theories on management, you’ll discover practical methods to
streamline your organization. [7 PDUs]

What Problem Are We Trying to Solve?
• The goal: delivering value with predictability, effi-

ciency, and quality

• The problem: as projects get larger, efficiency and

quality decrease non-linearly, for reasons we don’t

understand

Changing Our Thinking
• How most organizations approach their work

• False assumptions based on conventional wisdom

• Utilization versus productivity

• The hidden impact of waiting

Deming’s System of Profound Knowledge
• Appreciation for a system

• Knowledge of variation

• Theory of Knowledge

• Psychology

• PDSA - Deming’s application of the Scientific Meth-

od to management

Lean Thinking
• Understanding value

• Identifying waste in all of its forms

• Understanding how our products are built

• The concept of flow

• Pull versus Push

• Achieving excellence via the pursuit of perfection

• LAMDA - Lean Thinking’s PDSA-based value-cre-

ation cycle

Theory of Constraints
• What is The Theory of Constraints?

• Defining ‘constraint’

• The Five Focusing Steps - Theory of Constraints’

improvement cycle

What Is Lean-Kanban?
• The Origins of Lean-Kanban

• Lean Principles

• The Kanban Method

Why Kanban?
• What problem are we trying to solve?

• How does Kanban help us identify our problems?

• How does Kanban help us solve our problems?

Understanding Kanban Core Principles
• Start with what you do now

• Initially, respect roles, responsibilities, and pro-

cesses

• Agree to pursue evolutionary change

• Encourage acts of leadership at all levels

Applying Kanban Practices
• Visualize

• Limit WIP

• Manage Flow

• Make process, policies, and assumptions explicit

• Implement feedback loops

• Improve collaboratively, evolve experimentally

Implementing Kanban in Your Organization
• Building Your Kanban

• Operating the Kanban

10

“Very impressed with your company and
team. I look forward to getting more of
my team members in your training.”
Don Montgomery, FIS

See complete course description at
www.construx.com/learn

See complete course description at
www.construx.com/learn

Agile Development

Agile Developer
Boot Camp
This seminar provides hands-on experience in proven engineering practices to
help software developers work effectively in a team using any of the leading Agile
development approaches. Participants will learn how to deliver high-quality, valuable,
working software frequently while accommodating changing requirements. As leading
Agile frameworks encourage developers to be more generalists than specialists, this
seminar goes beyond just coding practices, providing participants with skills that will
leverage the twelve Agile principles. Note: Agile Developer Boot Camp focuses on Agile
engineering practices. Scrum/Agile processes are covered in our Scrum Boot Camp
seminar.

Agile Development Foundations
• Agile values and principles

• Scrum, XP, and Lean software development

• Agile development teams

Automated Testing
• Adding value with automated tests

• Test automation frameworks

• xUnit test patterns

Build Automation & Continuous Integration
• Automated build scripting

• Continuous integration infrastructure

• Essential practices for continuous integration

Version Control Strategies
• Using version control

• Workspace management

• Branching strategies

Collaborative Development
• Interfacing with other roles

• Pair Programming

• Collective code ownership

Test-Driven Development
• TDD cycle and its rules

• Acceptance Test-Driven Development (ATDD)

• Keeping test code clean

Clean Coding
• Coding standards

• Code analysis

• Defining “done”

 	 	 	

Individual Productivity
• Getting things done the Agile way

• Pomodoro technique

• Productivity principles

Refactoring
• Emergent Design

• Tracking and paying off technical debt

• System metaphors

Components & Dependency Management
• Keeping application releasable

• Dividing code base into components

• Managing dependencies

Requirements Refinement
• Refining and breaking up user stories

• Removing ambiguities

• Behavior-Driven Development (BDD)

Developer Testing Best Practices
• Ensuring functional coverage

• Domain testing

• Structural testing

Story & Task-Level Estimation
• Story points estimation

• Decomposition and recomposition

• Structured individual expert judgment

Scrum Essentials
for Leaders
This one-day seminar provides a comprehensive overview of Scrum to individuals that
need to support Scrum teams and the organization in its transition to Scrum. You will
obtain a good understanding of how the work is estimated, planned, and executed in
Scrum projects, which will enable you to contribute more effectively in the success
of the projects you are involved with. You will also learn key strategies to align and
define governance with Scrum projects, and to form and maintain self-organizing,
cross-functional development teams. This course in not intended for individuals who
are performing any of the three Scrum roles. For these individuals, we recommend our
Scrum Boot Camp seminar.

Why Agile
• Why companies are going Agile

• Delivering value early

• The Agile Manifesto

The Scrum Workflow
• Why companies use Scrum

• Scrum workflow

• Scrum roles, events, artifacts, and rules

Scrum Roles
• Scrum Master

• Product Owner

• Development Team

Forming Cross-Functional, Self-Organizing
Teams
• Stages of competency

• Cross-functionality matrix

• Raising levels of delegation and authority

• Communities of practice

Product Planning
• How software requirements are handled

differently in Scrum

• Populating the initial Product Backlog

• User stories and epics

• Early prioritization

Release Planning
• Flipping the Iron Triangle

• Initial backlog refinement

• User story mapping

Relative Sizing and Velocity
• Accuracy vs. precision

• Planning Poker

• Deriving release content and duration

Sprint Planning
• Definition of “Ready” and Definition of “Done”

• Task decomposition

• The Sprint Backlog

Sprint Execution and Project Tracking
• The Daily Scrum

• Sprint burndown chart

• Release burndown chart

11

“I found the Scrum training
incredibly valuable for me
and my team.”
Metin Gokdemir, Baker Hughes

See complete course description at
www.construx.com/learn

Agile Development

Software Estimation
in Depth for Agile
Projects
Agile development and Scrum in particular have opened the door to powerful new
estimation approaches. This course provides many useful rules of thumb, procedures,
and lightweight math for creating software estimates (“the art of estimation”) and briefly
introduces mathematically-intensive approaches to creating software project estimates
(“the science of estimation”). This course features extensive lab work to give you hands-
on experience creating many different kinds of software estimates--for large, medium,
and small projects as well as calibrating estimates to be accurate for your specific
development environment. This seminar is based on the best selling book Software

Estimation: Demystifying the Black Art, by Steve McConnell. Two days. [14 PDUs]

Estimation Background
• Estimation “art” vs. estimation “science”

• Estimates, targets, and commitments

• Estimation focus: features, schedule, cost/resources

• Kinds of estimates: macro vs. micro, top-down vs.

bottom up, algorithmic vs. heuristic

• State of the art and potential for estimation

accuracy

Estimation Process
• Differences in estimating agile projects vs. plan-

driven projects

• Basic steps in creating a software estimate

• Best estimation approaches by project phase

• Estimate refinement

• Standardized estimating procedures for agile

projects

Estimation Error
• Software’s Cone of Uncertainty

• Applying the Cone of Uncertainty to Agile projects

• Building your own Cone of Uncertainty

• The good, the bad, and the ugly: evaluating

estimates

• Measuring Error: Residual Error, RE, MRE, VFE, and

BRE

• Detecting errors in the estimation process itself

Popular Estimation Methods
• Off-the-cuff estimation

• Typical judgment-based estimation

• Structured expert judgment

• Decomposition

• Group estimation techniques

• Estimation checklists

Better Estimation Methods
• Counting, computing, and judgment

• Story points

• Planning poker

• Velocity

• Release burn-down charts

• Iteration burn-down charts

• Wide-band Delphi

• Estimation by analogy

• Proxy-based estimation

• The PERT formula

• Improving individual contributor estimates

Special Issues in Feature/Scope Estimation
• The Feature Staircase

• The Feature Cone of Uncertainty

• T-Shirt Sizing

• Software’s diseconomy of scale

Agile Planning
and Estimation

Learn state-of-the-art methods and practices for planning, estimating, and managing
Agile projects. The real-world practices presented in this seminar are based upon
evolved concepts and support both basic Scrum projects and Agile at scale—and they
have been proven on the ground through extensive use by Construx’s clients. These
concepts are illustrated throughout the seminar with numerous hands-on exercises.
After the seminar, attendees will understand and be able to effectively plan and estimate
their projects in days instead of weeks, and be able to confidently forecast project

completions with accuracy. [14 PDUs]

Agile Project Planning Strategies
• The Agile Paradigm Shift: No More Planning Around

Activities That Don’t Matter

• The Purpose of a Project

• What do We Mean by Planning and Estimating?

• Deliverables-based Planning

• The Minimum Viable Product

• Object-Oriented Planning and Design by Contract

Envisioning: The Foundation for Planning
• Begin With The End in Mind: The Product Vision

• Who Owns the Vision?

• Creating an Effective Product Vision: The Elevator Test

Planning by Focusing on Deliverables
• User-centered Functional Design

• Prioritizing Users and Features

Effective Agile Work Decomposition
• Agile Work Breakdown Structures

• Creating the Product Backlog

• Hierarchical Story Mapping: Prioritizing the Product

Backlog

Agile Estimation
• The Purpose of Estimation

• Why Estimation Is Hard, and Why It Doesn’t Have to

Be

• Agile Estimation Concepts

• Story Point Estimation Principles

• Playing (and Winning) the Estimation Game

• Agile Estimation Practices

• Estimation Practices for Large Projects

• Effective Organizational Estimation Practices

Release Planning
• Backlog Sequencing Strategies

• Release Planning Principles

• Project Staffing and Budgeting

• Creating the Project Schedule

• Avoiding “Schedule Chicken”

• Understanding Scope, Team, and Project

Velocity

Backlog Refinement
• What is Backlog Refinement (Grooming)?

• When and How to Groom

• The Definition of Ready

Effective Sprint Planning
• Using Velocity as a Guideline, Not a

Straightjacket

• Planning the Sprint

• Sprint Planning Smells

• Estimation During Sprint Planning

• A Discussion on Commitment

Component Task Creation and Estimation
During Sprints
• What is a Task?

• Dynamic and Static Task Decomposition

Approaches

• Rules for Sizing Component Tasks

• Lightweight Task Estimation Practices

See complete course description at
www.construx.com/learn

12

Introduction
•	 Defining software project success

•	 Understanding the challenges on a

	 software project

•	 Typical software project outcomes

•	 Construx’s path to software project success

Basic Survival Concepts
•	 Understanding labor rate, burn rate, capital vs.

expense

•	 Taking advantage of the upstream/downstream

effect

•	 Recognizing the intellectual phases of a

software project

•	 Fundamentals of software project estimation

Project Initiation
•	 Chartering the project

•	 Assessing risks to software project success

•	 Recognizing software project assets

Project Close Out
•	 Typical close-out tasks

•	 Using a project retrospective to learn from

	 the experience

Project Planning
•	 Using a software project plan template

•	 Developing work breakdown structures (WBS)

•	 Simplifying the WBS with a project matrix

•	 Building the WBS dictionary

•	 Choosing a project organization

•	 Choosing a project lifecycle

•	 Typical software project effort allocations

•	 Creating an activity network (PERT chart)

•	 Finding the critical path

•	 Developing a realistic project schedule

•	 Scheduling to fixed end dates

•	 Addressing uncertainty using rolling wave planning

•	 Tuning the plan to the specifics of your project

Execution, Checking, and Correcting:
Succeeding in Stages
•	 Controlling change

•	 Using earned value to objectively track project

status

•	 Conducting effective status meetings

•	 Creating useful project status reports

•	 Refining the project plan based on actual progress

•	 Capturing valuable project history in a project log

•	 Sanity checking the project using planning check-

point reviews

Software Project
Management Boot Camp
Leading any project can be a challenge. Leading a software project can be even more
challenging if you’re new to project management or new to software. This seminar
will help you make the transition to solid software project leadership. Software Project
Management Boot Camp teaches you the concepts and techniques necessary to manage
projects successfully. This seminar closely follows the Project Management Institute’s
(PMI) Project Management Body of Knowledge (PM-BOK) and shows how to apply these
best practices to a typical small-to-medium sized software project. This course involves
extensive hands-on practice with real-world case studies. [21 PDUs]

See complete course description at
www.construx.com/learn

Project Management

See complete course description at
www.construx.com/learn

Software Estimation
in Depth

This seminar provides many useful rules of thumb and procedures for
creating software estimates (“the art of estimation”) and briefly introduces mathematical
approaches to creating software project estimates (“the science of estimation”). This
seminar features extensive lab work to give you hands-on experience creating many
different kinds of software estimates—for large, medium, and small projects—as well as
calibrating estimates to be accurate for your specific development environment.
[14 PDUs]

Estimation Background
• Estimation art vs. estimation science

• Estimates, targets, and commitments

• Kinds of estimates: macro vs. micro, top-down vs.

bottom-up, algorithmic vs. heuristic

• State of the art and limits on estimation accuracy

• Surprise: Estimation’s real role on software

projects

Estimation Process
• Basic steps in creating a software estimate

• Estimating agile projects vs. estimating

plan-driven projects

• Best estimation approaches by project phase

• Estimate refinement

• Standardized estimating procedures for agile

and plan-driven projects

Estimation Error
• Evaluating estimates: the good, the bad, and the

ugly

• Errors in the estimation process

• Sources of project uncertainty

• Software’s Cone of Uncertainty

Popular Estimation Methods
• Off-the-cuff estimation

• Using expert judgment successfully

• Wide-band Delphi

• Cocomo II

Better Estimation Methods
• Estimation by analogy

• Decomposition

• Proxy-based estimation

• Estimation by function points

• The PERT formula

• Putnam’s Method

Special Issues in Scope Estimation
• Counting, computing, and judgment

• Fuzzy Logic

• T-Shirt Sizing

• Software’s diseconomy of scale

Special Issues in Effort Estimation
• Productivity variations across types of

software

• Calibration

• Industry data

• Historical company data

• Project data

• Estimating individuals’ work

Special Issues in Schedule Estimation
• The schedule equation

• Effect of schedule compression and expan-

sion

• The impossible zone

Automated Estimation Support
• Product demos

• Tool capabilities

• Interplay of the art and science of software

estimation

Human Roles in Estimation
• Estimate presentation techniques

• How to explain and defend an estimate

• Estimation and negotiation

13

Risk Management
In Depth
The project was a guaranteed success—until the subcontractor announced a three-week
delay and your chief architect quit to go hiking in Nepal. If you don’t attack project risks, they
will attack you! Learn intermediate and advanced strategies you can use on both general and
project-specific risks. Discover how to identify, address, and eliminate sources of risk before
they grow into major problems. This two-day seminar focuses on intermediate and advanced
strategies you can use to manage general risks and details practical techniques you can use to
control your project’s specific risks. [14 PDUs]

See complete course description at
www.construx.com/learn

Project Management

See complete course description at
www.construx.com/learn

Introduction
•	 A definition of risk

•	 What is risk management?

•	 The need for risk management

Risks in Detail

•	 The scope of risks

•	 Risk as cause-effect

•	 Ultimate causes and ultimate effects

•	 Risk timeframes

•	 Assets

Risk Identification
•	 Categories of risks

•	 Common project risks

•	 Practical techniques to identify risks and

assets 	

Risk Analysis/Prioritization
•	 Risk probabilities

•	 Risk severities

•	 Techniques for accurately estimating risk

probabilities and severities

•	 Determining risk exposure

•	 Prioritizing risks

•	 Analyzing/prioritizing assets

Risk Response Planning
•	 Risk response strategies

•	 Prevent

•	 Mitigate

•	 Transfer/share

•	 Contingency plan

•	 Risk reserve/provision Ignore

•	 Planning risk response

Risk Responses

•	 Responses to requirements problems

•	 Responses to inadequate project management

•	 Responses to inattention to upstream quality

•	 Responses to misunderstood project dynamics

•	 Strategies for maximizing common assets

Risk Response Control
•	 Response control through project tracking

•	 Ongoing risk reassessment

Increasing Software
Innovation
Much is written about the “secrets of innovation”. Why then are so few companies
innovating? What’s missing? This seminar will challenge your thinking about everything
you’ve ever heard about innovation. It provides a predictive model that explains why some
companies innovate and others don’t — a model to help you avoid wasting time and effort
trying “secrets of innovation” that won’t work for your organization.

You’ll leave this seminar knowing how to benchmark your organization’s ability to innovate
and implement innovation practices specific to your organization. 3-day seminar. [18 PDUs]

Great Products
•	 Identify characteristics of great products, and

learn what made them great

•	 Understand the impacts of wrong decisions at

the product or release definition stages

•	 Recognize the limitations of the traditional

product introduction process

•	 Apply a practical working definition for great

products

•	 Focus innovation on highest stakeholder value

•	 Understand the impact of technology evolution

on product development

Effective Product Teams
•	 Understand the differences between effective

and ineffective teams

•	 Overcome five characteristics of dysfunctional

product teams:

- Friction

- Avoiding individual responsibility

- Evading measurement

- Not innovating

- Not winning

•	 Increase team motivation

•	 Break down the walls and work as a team

Product Core Teams
•	 Structure innovative teams

•	 Foster business and technical collaboration

•	 Replicate the startup environment

•	 Create entrepreneurial teams with the Product

Introduction Core Team Maturity Model

•	 Develop future leaders	

Designing Innovative Products
•	 Establish a product vision

• Apply the five steps of 360° Product

Introduction:

- Quantify stakeholder value to focus innovation

- Bridge business and technology with user

scenarios

- Define features that maximize stakeholder

value

- Prioritize features based on business value and

development cost

- Create requirements that support innovation

•	 Leverage 360° Product Introduction with Scrum

•	 Incorporate elements of great design

Planning Great Products
•	 Incorporate two important life cycles into your

planning:

- Technology life cycle

- Technology adoption life cycle

•	 Apply a collaborative Phase Gate process that

leverages technical innovation

14

Project Management

Project Management Project Management

See complete course description at
www.construx.com/learn

Software Economics
Boot Camp
Companies are in business to maximize the return on their investment. Unfortunately, most
software professionals lack the skills to evaluate the business impacts of the technical choices
they make – which can lead to waste in time, money, and personnel. Grounded in engineering
economics and business decision making, this 2-day seminar teaches you the essential
concepts and techniques that will help you make technical decisions that positively impact the
all-important bottom line. This seminar is taught by Steve Tockey and is based on his book,

Return on Software. [14 PDUs]

Introduction and Foundations
•	 Business on purpose

•	 Harsh realities

•	 Seminar goals

•	 Roadmap

Fundamentals of Business Decisions
•	 Business decision-making process

•	 Selection criteria

•	 Proposal

•	 Cash-flow instance

•	 Cash-flow stream

•	 Cash-flow diagram

•	 Developing cash-flow streams

Interest: the Time Value of Money
•	 Time is money

•	 Interest

•	 Naming conventions in interest formulas

	 - Simple interest

	 - Compound interest

	 - Compound interest formulas

Comparing Cash-Flow Streams
•	 Simple comparison of two proposals

•	 Equivalence

•	 Bases for comparison

	 - Present worth

	 - Future worth

	 - Annual equivalent

	 - Internal rate of return

	 - (Discounted) payback period

•	 Project balance

Developing Mutually Exclusive Alternatives
•	 Independent proposals

•	 Dependent proposals

	 - Co-dependent proposals

	 - Mutual exclusive proposals

	 - Contingent proposals

•	 Developing mutually exclusive alternatives

•	 “Do-nothing” alternative

•	 Cash-flow streams for alternatives

For-profit Decision Making
•	 Minimum Attractive Rate of Return

•	 Basic for-profit decision process

•	 Example for-profit decision

•	 Rank on rate of return

Allowing for Inaccuracy in Estimates
•	 Knowledge drives accuracy

•	 Common ways to allow for inaccuracy

	 - Increase MARR

	 - Shorten planning horizon

•	 Better ways to allow for inaccuracy:

	 - Use ranges of estimates

	 - Sensitivity analysis

	 - Delay final decisions

Multiple Attribute Decisions
•	 Introducing multiple attribute decisions

•	 Different kinds of “value”

•	 Measurement scales

15

“I wish my entire company
could attend! Nearly
overwhelmed by all
the new knowledge
I can share.”

Whitney Yadrich, DEG Digital

“Everything about the
training was great –
the content, the
pace, and the
instructor.”

Rinette Scarso, Senior Services
Project Manager, Microsoft

See complete course description at
www.construx.com/learn

See complete course
description at
www.construx.com/learn

Requirements

Agile Requirements
In Depth
Agile development shifts traditional requirements work to a “just in time” approach. How
does this affect good requirements practices? This seminar explains Agile approaches to
traditional requirements sources including MRDs, PRDs, feature lists, and user scenarios.
It dives into techniques for developing requirements on Agile projects, including the Agile
Work Breakdown Structure (WBS), using story mapping to define the scope of the project,
writing user stories, sizing stories (agile estimation), and developing acceptance criteria
for user stories. Concepts are illustrated through extensive use of hands-on labs. [14 PDUs]

What Are We Trying To Build?
•	 It all starts with the product vision

•	 Characteristics of good product visions

Software Requirements: What and Why
•	 What is a requirement?

•	 The product vision as the top-level requirement

•	 Three purposes of requirements

•	 Using requirements to manage risk

•	 Product versus project requirements

•	 Potentially useful requirements artifacts

•	 Working software as the ultimate requirements

specification

Initial requirements gathering
•	 Envisioning the high level requirements

•	 What can I do with it: high-level user stories and

story mapping

•	 How it works: business rules and the domain

model

•	 How it looks: low-fidelity UI models and

workflows

Just-in-time Requirements Elaboration
•	 No requirement before its time: the

concept of the last responsible moment

•	 Requirements elaboration during iteration

planning

Requirements Change Management
Requirements Validation
•	 Acceptance criteria

•	 The definition of “done” and why it matters

Agile Requirements
Modeling
This seminar gives you hands-on experience using five basic requirements models to more
efficiently and effectively elicit and analyze functional requirements. You’ll create Context
Diagrams, Activity Models (workflow models), Domain Models (E-R models, class models,
data models), Use Cases and State Models. You’ll gain proficiency at using these models
in practical and Agile ways to more precisely and concisely capture requirements without
getting caught up in modeling semantics. You’ll see how these five models can enable you
to gather more requirements earlier in the project, and why model-based requirements
exhibit greater stability than those that are interview-based. The seminar will also sharpen
your instincts for knowing when you’ve done enough requirements work to proceed, and
where requirements risks remain. [4 PDUs]

Define Our Model Toolkit
•	 Define the model

•	 Requirements modeling toolbox

Model Your Context
•	 State the boundary

•	 Identify actors

•	 Classify into sets

•	 Name the data flows

•	 Prioritize

Define Use Cases

•	 Define tasks

•	 Select the primary actor

•	 Confirm value proposition

•	 Develop post-conditions

•	 Develop pre-conditions

•	 Write a description

•	 Select a normal course

•	 Separate actor and system

steps

•	 Create alternate courses

•	 Define exception courses

•	 Add specific information

Create Activity Models

•	 Examine the activities

•	 Start from the end

•	 Align actors and sub-tasks

•	 Sequence the activities

•	 Show decision points

•	 Fork parallel activities

•	 Sync activities

•	 Identify technology artifacts

Start a Class Model
•	 Find the nouns

•	 Search other models

•	 Examine data cohesion

•	 Name the classes

•	 List important attributes

•	 Run the pit test

•	 Look for data coupling

•	 Associate the classes

•	 Assign cardinality

Utilize State Models
•	 Find “status”

•	 Describe a state

•	 Borrow from activity models

•	 Bring an instance into existence

•	 Transition to a new state

•	 Record transition rules

•	 Delete an instance

Find the Requirements

16

“The different techniques for prioritizing requirements,
the samples and templates are some of the best I’ve
seen in over 20 years in the industry.”
Don Evatt, Cisco

Requirements
Boot Camp
What is the most frequently reported cause of software project failure–regardless of
project size or type of software? Requirements challenges. Discover how leading-edge
companies use requirements engineering to support successful software projects.
Learn the three purposes of requirements and how to distinguish between require-
ments fantasies and requirements reality. Practice practical techniques for exploring
user needs, capturing requirements, controlling changes, and building highly satisfactory
software. [21 PDUs]

Model-Based
Requirements
This three-day seminar provides in-depth, hands-on coverage of developing and
documenting model-based functional requirements as part of a Model-Driven Architecture
(MDA) software development approach. The software requirements are documented
using a subset of the Unified Modeling Language (UML) instead of in a Natural Language
like English. Model-based requirements are more complete, concise, less ambiguous than
Natural Language requirements and lead to developing higher quality software with less
cost and shorter schedules. No prior knowledge of object-oriented development, UML,
or MDA is required. The companion seminar, Object-Oriented Design, explains how to
complete the MDA process and create code that satisfies these requirements. [4 PDUs]

See complete course description at
www.construx.com/learn

Requirements

Software Requirements: What and Why
•	 Requirements: fantasies and real world

•	 What is a requirement?

•	 Three purposes of requirements

•	 Product and project requirements

•	 Levels and types of requirements

•	 Characteristics of good individual requirements

•	 Characteristics of good sets of requirements

•	 The vision statement as the top-level requirement

•	 Requirements as a risk management activity

•	 Knowing when you’re done

The Requirements Process
•	 Comprehensive strategies for defining

requirements

•	 Iterative elicitation, analysis, specification, and

validation

•	 Breadth-first approaches

•	 Depth-first approaches

•	 Spiral approaches

•	 Tools: chartering workshop, collaborative

development, risk management, parallel

development

Requirements Elicitation
•	 Who has requirements?

•	 Eliciting requirements from people

•	 Eliciting requirements from other systems

•	 Eliciting requirements from the environment

•	 Finding the decision maker

•	 Incorporating business rules

•	 Dealing with ambiguity

•	 Tools: interviews, context-free questioning,

brainstorming, JAD workshops, prototyping,

task analysis, use cases, competitive

benchmarking, document archeology, project

charter, vision statement

Who Defines Requirements
•	 The requirements engineer

•	 Requirements engineering roles

•	 Skills needed to develop requirements

effectively

•	 How the requirements engineer relates to the

rest of the project

•	 Checklist for requirements leads

Requirements Analysis
•	 Classification and prioritization schemes

•	 Requirements negotiation

•	 Tools: prototypes, use cases, essential systems

modeling, data dictionary

Requirements Specification
•	 Characteristics of a good requirement

specification

•	 Models as specification

See complete course description at
www.construx.com/learn

Introduction
•	 Why model?

•	 Software methods and models

•	 Introduction to UML

Fundamental Principles
•	 Importance of complexity

•	 Abstraction

•	 Cohesion and coupling

•	 Design to invariants

Analysis vs. Design
•	 Requirements vs. non-requirements

•	 Functional requirements vs. non-functional

requirements

•	 How to separate

•	 Why to separate

•	 Definitions of analysis and design

Object Orientation
•	 Concepts and terminology of object-

orientation

Use Case Modeling
•	 Actors

•	 Use cases

•	 Participates

•	 Includes & extends

•	 Generalizations 	 	

Class Modeling
•	 Classes

•	 Attributes

•	 Domains

•	 Associations

•	 Multiplicity

•	 Generalization

Interaction Modeling
•	 Sequence

•	 Communication

State Modeling
•	 States

•	 Events

•	 Transitions

•	 Actions

Summary of OOA Modeling
•	 Cross-model consistency

•	 Stimulating models

Scaling Up
•	 Recursive design/domain separation

•	 Decomposing domains into subsystems

Overview of Designing from an OOA

17

Web API Design and
RESTful Web Services
The REST architectural style defines a set of principles and constraints that promote
system scalability, loose coupling, reduced latency, security, and the encapsulation of
legacy systems. While REST is relatively easy to understand, it does not provide any
guidance on how to create programmable “Web APIs”. This course will help attendees
acquire a thorough understanding of how to design RESTful Web APIs that support CRUD,
transactional scenarios, workflow, and even complex systems integration.

See complete course description at
www.construx.com/learn

Design & Construction

Fundamental Web API Design
•	 Review of HTTP

•	 The 3 web service API Styles

•	 Why use Resource-Oriented Web APIs?

•	 When not to use?

•	 REST Recap

•	 Resource APIs and service contracts

- Logical components of the contract

- The debate over Service Descriptors

•	 APIs for CRUD and other more complex scenarios

•	 Client/Service Interaction patterns

- Request/Response

- Request/Acknowledge

•	 Communicating business logic errors to clients

Behind the Web API
•	 Service Controllers and data-binding

•	 Implementation patterns

- Transaction Script

- Operation Script

- Command Invoker

- Data Source Adapter

- Workflow Connector

•	 Request and Response Mappers

Advanced Web API Design
•	 Client/Service Interaction patterns

- Long Poll

- Media Type Negotiation

•	 Patterns for Complex Searches

- Query strings

- Simple Search DTOs

- Query Tree DTOs

•	 Transactions and transaction management

•	 Workflow

•	 Service composition

•	 Hypermedia and the Linked Service pattern

Service Evolution, Versioning, and Governance
• What changes in Web APIs cause them to break

clients?

• API version identification patterns

• Patterns to enable backward and forward

compatibility

- Data Transfer Objects

- Dataset Amendments

- Tolerant Reader

- Media Type Negotiation

- Consumer-Driven Contracts

• Service governance concepts and practices

• What about SOA?

Web Service Infrastructure Patterns
• Service Interceptors and their uses

• Client Infrastructure patterns

- Service Connector

- Asynchronous Response Handler

- Idempotent Retry

• What about SOA Infrastructures?

- Web APIs and Service Registries, ESBs, and

Orchestration Engines

Service Performance, Scalability, and Availability
• The CAP Theorem

• Asynchronous processing

• State management

See complete course description at
www.construx.com/learn
See related course, Agile Developer
Boot Camp for On-Demand Training

Developer Boot Camp

This intense hands-on seminar will give you the tools you need to be a professional software
developer. This seminar combines techniques from the areas of design, construction, and
testing to give you pragmatic guidance into the business of writing working code. Principles
will be illustrated with numerous concrete examples of good and bad code in a variety of
languages. In depth labs allow you to practice applying the principles.

Managing Complexity
• Essential and accidental difficulties

• Modularity

• Encapsulation

• Information hiding

• Coupling

• Cohesion

• Abstraction

• Interfaces

• Design by contract

• Knowledge as data

Designing for Change
• Variability analysis

• Typical changes

• Design to invariants

• Extension & intension

• Association versus inheritance

• Delay binding times

• Composability

• Open / closed principle

Key Construction Skills
• Design principles

• Design patterns

• Structured programming

• Object-oriented programming

• Functional programming

• Improving productivity

• Working on a team

• Writing legible code

• Tools, techniques, and practices

Increasing Your Software’s Value
• Effective requirements

• Prototyping

• Modeling

• User interface design

• Read-time versus write-time convenience

• Characteristics of high value software

• Transparency

Error Handling
• Assertions

• Exceptions

• Diagnostics

• Defensive programming

Ensuring Correctness
• Functional unit testing

• Structural unit testing

• Automated feature testing

• Domain analysis

• Equivalence class partitioning

• Testing strategies

• Measuring complexity

• Minimize the lag between error insertion and

error detection

• Avoiding common pitfalls

• XUnit frameworks

• Mutation testing

• Static analysis

18

Design & Construction

Code Complete
Essentials
In this intense one-day seminar you will learn dozens of proven tips, techniques, and
principles to produce clean, industrial-strength code. Capturing the body of knowledge
available from research, academia, and everyday commercial practice, this seminar
synthesizes the most effective techniques and must-know principles into clear, pragmatic
guidance. This seminar uses dozens of examples of good and bad code in Java, C++, C#,
and Visual Basic to explain how to shorten development time, reduce errors, and make
debugging easier. This seminar is taught by Steve McConnell, the coding guru who wrote
the best-selling Code Complete, a computing industry classic that won the Jolt Excellence
award for best programming book of the year and has been translated into more than a
dozen languages.

Design & Construction

See complete course description at
www.construx.com/learn

Introduction
•	 Construction’s critical role in software

development

•	 Technology knowledge vs. principles knowledge

•	 Dealing with “accidental” and “essential”

difficulties

Defensive Programming
•	 Error processing

•	 Effective strategies for anticipating change

•	 Code stepping

•	 Offensive programming

Creating High Quality Designs

•	 Differences in design effectiveness

•	 Attributes of great designers

•	 The Primary Technical Imperative: Managing

Complexity

•	 Managing technical debt

•	 The relationship between naming and design

•	 Design guidance: information hiding, abstraction,

encapsulation, modularization, cohesion,

separation of concerns

High-Quality Routines
•	 Coding Horror: examples of low-quality routines

•	 Program layout techniques

•	 Low-effort, high-payoff commenting techniques

•	 The Pseudocode Programming Process

High-Quality Classes
•	 Good and bad reasons to create classes

•	 Designing interfaces

Code Optimization

•	 A defensive strategy for code optimization

•	 Three optimization approaches that don’t work

•	 Example of intensive optimization

Quality Practices
•	 Debugging by superstition

•	 A scientific approach to debugging

•	 Tips for finding defects

•	 Tips for fixing defects

•	 Defect cost dynamics

•	 Error prone modules

Design Boot Camp

Different designers will create designs that differ by at least a factor of 10 in the code
volume produced. How do you invent simple, straightforward designs and avoid complex,
error-prone ones? Understand the fundamental design principles that lead to high-quality
designs requiring low implementation effort. Learn both Agile and traditional approaches
to creating great designs quickly and economically.

See complete course description at
www.construx.com/learn

What is “Design”?
•	 Design as an activity vs. a product

•	 Design as a tool for communicating

•	 Managing complexity with design

•	 Characteristics of excellent designs

Fundamental Design Principles
•	 Use abstraction

•	 Encapsulate design decisions

•	 Maximize cohesion; minimize coupling

•	 Design to invariants

•	 Avoid premature optimization

•	 Beware of Fisher’s Fundamental Theorem

Managing Design Complexity
•	 Dimensions of design (interface, data, function)

•	 Measures of design complexity in each dimension

•	 Balancing local and global complexity

Design attributes: The “-ilities”
• ISO/IEC 9126 Quality Model

• Non-ISO/IEC 9126 “-ilities”

• Managing conflicts among the “-ilities”

Architectural Design
• Pipes & filters

• Model-view-controller

• Layered architectures

• Service-oriented architectures

• Blackboard

Design Paradigms
• Aspect-oriented design

• Object-oriented design

• Structured design

• Design patterns

Detailed Design
• Refactoring

• Semantics-preserving transformations

• Program design languages

• Error processing

Design Documentation
• Desirable properties of design documentation

• IEEE STD 1016-1998 Recommended Practice

for Software Design Descriptions

• Agile design documentation

Creativity in Design
• Factors that contribute to excellent designs

• Value of creativity

• Research on software creativity

• Fudd’s Law

19

“Arguably the best course I have
ever taken.” Joe Johnson, Infospace

Design & Construction

See complete course description at
www.construx.com/learn

Model-Based
Design
This two-day seminar provides in-depth, hands-on coverage of developing and
documenting software designs from model-based functional requirements as part of a
Model-Driven Architecture (MDA) software development approach. The software design is
documented using a subset of the Unified Modeling Language (UML). Model-based designs
are more complete, concise, less ambiguous than typical designs and lead to developing
higher quality software with less cost and shorter schedules. No prior knowledge of object-
oriented development, UML, or MDA is required. The companion seminar, Object-Oriented
Analysis, explains how to start the MDA process and create the model-based requirements
that feed into this design.

Design Pattern
Essentials
Design patterns made understandable! Design patterns are powerful, predefined solutions
to common software design problems. Patterns provide a powerful form of reuse because
they are transportable across different languages and software architectures. This seminar
introduces and explains the highest-leverage design patterns in a clear way that’s easy to
understand. You will learn how to use specific design patterns to improve your designs, and you
will practice applying design patterns to sample design problems. You will also see how design
patterns can improve your design process overall.

See complete course description at
www.construx.com/learn

Introduction
•	 Why model?

•	 Software methods and models

•	 Introduction to UML

•	 Analysis vs. Design

•	 How to read an OOA

Fundamental Principles
•	 Importance of complexity

•	 Abstraction

•	 Encapsulation

•	 Design to invariants

Object Orientation
•	 Concepts and terminology of object orientation

Defining Interfaces
•	 Storyboarding

•	 Dialog maps

•	 Usability

•	 Interface control doucments (ICDs)

Deriving High-level Designs
•	 Deriving OOD classes and operations for

OOA

•	 Deriving OOD classes and operations

from Interface Designs

Low-level Design
•	 Deriving data structures from OOA

•	 Deriving procedure structures from OOA

Design Optimization
•	 Straight-forward optimizations

•	 High-level optimizations

•	 Low-level optimizations

Summary

Introduction
•	 Design patterns defined

•	 Understanding design pattern forces

Fundamental Design Principles
•	 Maximize cohesion, minimize coupling

•	 Encapsulate design decisions

•	 Base the design on the invariants

•	 Subclasses should be substitutable

•	 Favor association over inheritance

•	 Minimize overall complexity

UML Notations
•	 Class, attribute, operation

•	 Association and multiplicity

•	 Aggregation and composition

•	 Inheritance

•	 Abstract class

High Leverage Patterns
•	 Model-View-Controller

•	 Adapter

•	 Façade

•	 Bridge / Strategy

•	 Composite

•	 Observer

•	 Template method

•	 Factory method

•	 Abstract factory

•	 Singleton

Other Useful Patterns (as time permits)

•	 Iterator

•	 Proxy

•	 Decorator

•	 Command

•	 State

•	 Data access object

20

“The instructor was very engaging! He kept my interest the whole
time and is the perfect combination of expert, geek, and comedian.”
Heidi Shea, Newmarket International

Design & Construction

Agile Testing for
Software Developers
Test Driven Development is a critical component of Agile development. Unit testing
without TDD typically achieves only 50-60% statement coverage, but with TDD you will
achieve 100% branch coverage. Learn how to design efficient and effective tests and
how to make the software itself more testable. See how to plan and execute an effective
developer testing strategy. Understand the various ways of measuring the coverage and
effectiveness of your test cases.

Professional Tester
Boot Camp
How do professional testers test software? This seminar teaches the techniques, tips,
tricks, and strategies used by test professionals. You will learn and apply numerous
detailed test design strategies for black-box (functional) testing and system testing.
You will also learn practical techniques for planning, designing, and executing effective
testing on real software projects. Determine how much testing is enough for your project,
whether your test cases are adequate, and how to minimize wasted testing effort. This
seminar emphasizes black box (functional) testing and system testing.

Testing & QA

See complete course description at
www.construx.com/learn

See complete course description at
www.construx.com/learn

Test Planning
•	 How to make your testing more effective

•	 Making your testing more efficient

•	 Evaluating test case designs

•	 When to plan for testing

•	 Relating testing to other software development

activities

•	 Evaluating test case designs

•	 Determining how much testing is enough

Domain Testing
•	 Where to find domain specifications

•	 Analyzing domain specifications

•	 Common domain defects you should test for

•	 Designing input domain tests

•	 Designing output domain tests

•	 Analyzing domain boundaries

Testing from Requirements
•	 How to ensure that every requirement is tested

•	 Deciding the number of test cases necessary for

each requirement

•	 Creating test cases from use cases

•	 Creating test cases from relationship models

•	 Creating test cases from state-transition models

Tool Support for Testing
•	 Determining which tools are useful for supporting

testing activities

Pairwise Testing
•	 When is pairwise testing useful?

•	 Learn how to reduce the number of test cases

when you have to test all combinations.

For example:

	 -	 Multiple operating systems

	 -	 Multiple web browsers

	 -	 Plug-ins

	 -	 Web server software

	 -	 Server operating systems

•	 Downloadable software to figure out your test

cases

•	 Commercial tools that can help with pairwise

testing

Test Automation
•	 Improving the efficiency of testing with

automation

•	 Why is test automation harder than just

recording and playing back keystrokes?

•	 How to get started with data driven test

automation

•	 Advantages of keyword driven test automation

•	 Commercial tools/frameworks to support

keyword driven test automation

Testing the Tests
•	 How do you know your tests are reliable?

•	 How do you know your tests are effective?

•	 How do you uncover and improve low quality

tests?

What is the Test Driven Approach?
Unit Testing Fundamentals
Unit Testing Patterns and Anti-Patterns
•	 Stubs, drivers, shunts, mocks

•	 Data-driven, delta, exceptions, guards

Domain Analysis
•	 Equivalence classes

•	 Boundary values

•	 Pairwise testing

Structural Analysis
•	 Control flow testing

•	 Coverage metrics

•	 Complexity metrics

High Level TDD

•	 Agile Acceptance Testing

•	 Testing an MVC pattern

Writing Testable Code
Testing with Contracts 	

Expository Programming
•	 Variable names

•	 Routine names

•	 Intentional programming

•	 Comments

Modularity
•	 Encapsulation

•	 Information hiding

•	 Interfaces

•	 Abstraction

•	 Coupling

•	 Cohesion

Design Patterns
Functional Design
Legacy Code
•	 Enhancing

•	 Fixing

•	 Refactoring

21

“Excellent seminar and great presenter.
He made sure we understood the topic
before moving on.”
Dian Von Ballmoos, Fandango

Total Project Quality

From project inception, a focus on quality through planning, execution, and delivery can
help improve software project cost, schedule, and functionality. This three-day seminar
shows you how to define quality in specific terms with a focus on how to decide what is
“good enough” for a particular project. You will learn to align project activities to achieve
quality throughout the project lifecycle—including numerous alternatives to end-of-proj-
ect testing. [17 PDUs]

Developer Testing
Boot Camp
Developer testing is a critical component of software development--yet studies show that
developer testing is typically inefficient and ineffective. Significant developer effort is spent
without finding defects that should have been found. Learn how to be more efficient and ef-
fective by achieving higher test coverage and how to make the software itself more testable.
See how to plan and carry out an efficient and effective developer testing strategy. Avoid
common testing pitfalls, and learn to determine how much developer testing is enough.
2-day seminar.

Testing & QA

See complete course description at
www.construx.com/learn

See complete course description at
www.construx.com/learn

Core Concepts
•	 Test case, test set, test suite

•	 Positive and negative test cases

•	 Functional and structural testing

•	 Unit, integration, system,

acceptance, regression testing

•	 Test coverage

•	 Test tools and frameworks

•	 Testing as risk mitigation

Functional Testing
•	 Testing from requirements

•	 Requirements coverage

•	 Input domain analysis

•	 Output domain analysis

•	 Equivalence class partitioning

•	 Equivalence class coverage

•	 Boundary value analysis

•	 Boundary value coverage

•	 Combinatorial analysis

•	 All pairs coverage

Structural Testing
•	 Control flow analysis

•	 Statement coverage

•	 Decision (branch) coverage

•	 Condition-decision coverage

•	 Multiple condition coverage

•	 Modified condition/decision

coverage

•	 Path coverage

•	 Loop coverage

•	 Static Analysis

•	 Cyclomatic complexity

•	 Fan in

•	 Fan out

Test Planning
•	 Determining the ROI of testing

•	 Cost/benefit of automating

tests

•	 Cost/benefit of unit testing

•	 Cost/benefit of integration

testing

•	 Cost/benefit of system testing

•	 Cost/benefit of designing for

testability

•	 Introduction to risk-based

testing

Unit testing tools and practices

•	 Unit testing frameworks

•	 Stubs and drivers

•	 Test doubles and mock objects

•	 Data driven tests

Test driven development
•	 Process of test driven

development

•	 Benefits of test driven

development

•	 Costs of test driven

development

Defining Quality
• Textbook quality definitions

• QA vs. QC

Quality Goals
• The ISO 9126 definition of quality

• Characterization

- Scaling a characteristic

- Prioritization of characteristics

• Establishing what it means to be “good enough”

General Strategy
• The basic philosophy of software quality

• Early removal of defects

• Insulating from impact of defects

• Using the PDCA cycle

Finding Faults
• Common faults in software and where they are

created

• Identifying the defects

• Tracking defects

Detection Toolbox
• Peer reviews

• Quality attribute workshops

• Dynamic testing

• Prototyping

• Detection effectiveness

Approaching Quality
• Basic approach

• Lifecycles and characteristics

Implementing Quality in Requirements
• Five whys

• Task analysis

• Vision & goals

• Gists

• Fit criteria	 	

Implementing Quality in Design
• Facilitated workshops

• Architecture tradeoff analysis method

• Design impact estimation

• Personas

Implementing Quality in Code
• Satisfice and softgoals

• Optimization

Analytical Toolbox
• Measures

• Comparing discrete classes

• Trending a class

• Process control

• Collecting data

Managing Software Quality
• Organizational level quality

• Process improvement

Establishing a Quality Culture
• Growing capability

• Selecting practices

• Audits

22

10X Individuals and
Interactions: Unleashing
the Power of the Team
The Agile Manifesto states that, “We value individuals and interactions over processes
and tools.” What does that really mean? This workshop explains what that means
by diving into the details of human interactions, including working with different
personalities, dealing with conflict, collaborating effectively, team decision making,
creating shared vision, and building high performance teams. It is complementary to the
more process-focused content in Agile practices like Scrum, Kanban, or Construx’s 10x
Software Development programs.

Software projects rarely fail for technical reasons. They fail for reasons related to people.
Make sure the people on your next project have the human interaction skills they need
to succeed!

10X Software
Engineering - Teams
Decades of research have found at least a ten-fold (10X) difference in productivity and
quality between the best developers and the worst–and between the best teams and
the worst. Discover the 8 Key Principles of 10X Engineering. Gain a deeper understanding
of the factors that affect productivity and avoid the productivity traps of “minus-x”
engineering. Learn and apply critical techniques that will turn your team into a high
performing, 10X Team. [18 PDUs]

See complete course description at
www.construx.com/learn

Methods & Processes

See complete course description at
www.construx.com/learn

Defining 10X
•	 10x differences in productivity and quality

•	 10x principles

10X Principle: Avoid Minus-X Engineering
•	 Classic mistakes

•	 Brute force quality

•	 Multi-tasking

•	 Typical Minus-X project

•	 Your Minus-X project

Basic Engineering
•	 Mastery of fundamentals and excellent

execution

•	 Technical fundamentals

•	 Technical management fundamentals

•	 Quality fundamentals

•	 Your organization’s bare essentials

10X Principle: Seek Ground Truth
•	 Daily build & smoke test

•	 Project tracking

•	 Communicating status

•	 Root cause analysis

•	 Change control–Agile and plan driven

•	 Gates and checkpoints

•	 Evidence-based case study

10X Principle: Base Decisions on Data
•	 Plan-Do-Check-Act

•	 Measurement

•	 Iteration and incrementalism

•	 How much agility is enough?

•	 Customer involvement

•	 Power of interactive workshops

10X Principle: Tailor the Solution to the Problem
•	 Streamlining work with intellectual phase

profiles

•	 Phase and activity variations

•	 Life cycle models

•	 Efficient information capture

•	 Documents and digital cameras

•	 Toolboxes

10X Principle: Set Direction

Project Direction

•	 Project charter

•	 Vision statements

10X Principle: Set Direction
Feature Selection
•	 Pareto analysis

•	 T-shirt sizing

•	 Rolling wave planning

•	 Product backlog

10X Principle: Attack Uncertainty
•	 Responses to uncertainty

•	 Risk management

•	 Accurate estimates

•	 Uncertainty and iteration

10X Principle: Minimize Unintentional Rework
•	 Why would any rework be intentional?

•	 Early defect detection

•	 Defect removal rates for specific techniques

•	 Comparison of iterative and sequential defect

removal effectiveness

•	 Formal inspections

High Performance 10X Teams
•	 Team basics

•	 Characteristics of high performance teams

•	 Role of teamwork

•	 Effective vs. ineffective teams

•	 Stages of team development

•	 Guidelines for team members and leaders

•	 Self-Assess your teamwork skills

•	 Action Plan

Leveraging Diverse Personalities to Form High
Performance Teams
•	 Personality types

•	 Social Style test

•	 Interpretation of Social Style test results

•	 Drivers (Lions)

•	 Expressives (Otters)

•	 Amiables (Golden Retrievers)

•	 Analyticals (Beavers)

•	 Personality substyles

•	 Communicating with different social styles

•	 Conflict resolution with different social styles

•	 Working in teams with different social styles

•	 Action Plan

Supporting Interactions with the RULER
Model
•	 Three steps to individual self-regulation

•	 Working with self-regulation in others

•	 Supporting high performance teams with

emotional intelligence

•	 Gaining deeper insight into yourself with the

Mood Meter

•	 Using the Mood Meter to support productive

meetings

•	 Creating team charters with the RULER model

•	 Identifying desired steady state with the RULER

charter

•	 Identifying necessary transitory states with the

RULER charter

•	 Action Plan

High Performance Communication
•	 Elements of high performance communication

•	 Preparing for difficult conversations

•	 Five step guide to addressing conflicts

•	 Crucial Conversations

•	 Making a plan for a Crucial Conversation

•	 Succeeding with presentation to executives

•	 Preparing for difficult conversations using

Social Styles

•	 Action Plan

High Performance Collaboration
High Performance Team Decision Making
Maximizing Energy and Personal Effectiveness

23

Scrum.org
TM Endorsed Education

ProviderTM

John Clifford is a Senior Fellow at Construx Software where he
focuses on software development, project management, and team
management practices with an emphasis on Agile practices. With more
than three decades of IT experience, John has held leadership roles
as a development engineer, product feature team manager, group QA
manager, group project manager and development director. John holds
Certified Scrum Master, Certified Scrum Product Owner, and Certified
Scrum Practitioner certifications from the Scrum Alliance.

Melvin Perez-Cedano is a Senior Fellow at Construx Software
where he focuses on software design, software construction, software
process, and configuration management. He has a successful track
record transforming dysfunctional and immature organizations into
performance and quality-oriented environments. Melvin has deep
experience in Agile practices including code cleaning, refactoring, and
unit testing, and is also well versed in UML, RUP, and CMMI. He has
lectured extensively throughout the Americas and is a former IEEE
Distinguished Lecturer for Latin America.

Steve McConnell is CEO and Chief Software Engineer at Construx
Software where he consults to a broad range of industries, teaches
seminars, and oversees Construx’s software development practices.
Steve is best-known as the author of Code Complete. He has also
written Software Estimation, Professional Software Development,
and other titles. His books twice won the Jolt Excellence award for
outstanding software development book of the year, as well as
Amazon.com’s award for best computer book of the year.

Jenny Stuart is the Vice President of Consulting at Construx Software.
Jenny applies her 20+ years of leadership experience in software testing,
process improvement, quality assurance, and Agile techniques to helping
companies make dramatic improvements in their software development
processes. She holds a BSEE from the University of Washington, and
CSDP certification. Jenny is a member of the Computer Society of the
IEEE, the Association for Computing Machinery, the American Society for
Quality, and the Quality Assurance Institute.

Bob Webber is a Senior Fellow at Construx with over 30
years of software experience delivering innovative products in
telecommunications, entertainment and life sciences. Bob’s roles have
ranged from software developer to executive R&D positions at GTE and
AT&T, followed by engineering and product management leadership
at three successful start-up companies. As CEO, Bob led TranSenda
International to successful acquisition by BioClinica (BIOC), where he
became Vice-President of Product Management.

Earl Beede is a Senior Fellow at Construx Software, where he designs
and leads seminars and provides consulting services on early project-
lifecycle practices, estimation, requirements, quality assurance, contract
management, and software methodologies. With more than 20 years
experience in quality assurance, systems analysis, process architecture,
and management, Earl has designed and written software development
processes for a wide variety of industries. He is a member of the IEEE
Computer Society and a coordinator of the Seattle Area Software Process
Improvement Network.

Steve Tockey is the author of Return On Software, a guide for
companies that want to maximize their investment in software
development. As a Principal Consultant at Construx, Steve focuses on
software project management, estimation, software quality, object-
oriented development, and distributed object computing. He is a
Certified Software Development Professional (CSDP), and chairs the
CSDP Certification Committee of the IEEE Computer Society. He is also a
charter member of the OMG, the group that oversees development of
the UML.

Our Advantage Is Our Experts

Steve personally oversees all

course development and delivery

at Construx, guaranteeing your

team the best possible use of

your valuable training time.

www.construx.com
Cover photo © mishoo/123RF

